Description: A rewriting rule for biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biimpor | |- ( ( ( ph <-> ps ) -> ch ) <-> ( ( -. ph <-> ps ) \/ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imor | |- ( ( ( ph <-> ps ) -> ch ) <-> ( -. ( ph <-> ps ) \/ ch ) ) |
|
| 2 | notbinot2 | |- ( -. ( ph <-> ps ) <-> ( -. ph <-> ps ) ) |
|
| 3 | 2 | orbi1i | |- ( ( -. ( ph <-> ps ) \/ ch ) <-> ( ( -. ph <-> ps ) \/ ch ) ) |
| 4 | 1 3 | bitri | |- ( ( ( ph <-> ps ) -> ch ) <-> ( ( -. ph <-> ps ) \/ ch ) ) |