Metamath Proof Explorer


Theorem biimpor

Description: A rewriting rule for biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Assertion biimpor φ ψ χ ¬ φ ψ χ

Proof

Step Hyp Ref Expression
1 imor φ ψ χ ¬ φ ψ χ
2 notbinot2 ¬ φ ψ ¬ φ ψ
3 2 orbi1i ¬ φ ψ χ ¬ φ ψ χ
4 1 3 bitri φ ψ χ ¬ φ ψ χ