Step |
Hyp |
Ref |
Expression |
1 |
|
addcl |
|- ( ( B e. CC /\ C e. CC ) -> ( B + C ) e. CC ) |
2 |
1
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B + C ) e. CC ) |
3 |
|
subsub |
|- ( ( A e. CC /\ ( B + C ) e. CC /\ C e. CC ) -> ( A - ( ( B + C ) - C ) ) = ( ( A - ( B + C ) ) + C ) ) |
4 |
2 3
|
syld3an2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( ( B + C ) - C ) ) = ( ( A - ( B + C ) ) + C ) ) |
5 |
|
pncan |
|- ( ( B e. CC /\ C e. CC ) -> ( ( B + C ) - C ) = B ) |
6 |
5
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B + C ) - C ) = B ) |
7 |
6
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( ( B + C ) - C ) ) = ( A - B ) ) |
8 |
4 7
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - ( B + C ) ) + C ) = ( A - B ) ) |