Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 25-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrclsbex.d | |- D = ( O ` B ) |
|
ntrclsbex.r | |- ( ph -> I D K ) |
||
Assertion | ntrclsrcomplex | |- ( ph -> ( B \ S ) e. ~P B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrclsbex.d | |- D = ( O ` B ) |
|
2 | ntrclsbex.r | |- ( ph -> I D K ) |
|
3 | 1 2 | ntrclsbex | |- ( ph -> B e. _V ) |
4 | difssd | |- ( ph -> ( B \ S ) C_ B ) |
|
5 | 3 4 | sselpwd | |- ( ph -> ( B \ S ) e. ~P B ) |