Metamath Proof Explorer


Theorem ntrclsrcomplex

Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 25-Jun-2021)

Ref Expression
Hypotheses ntrclsbex.d
|- D = ( O ` B )
ntrclsbex.r
|- ( ph -> I D K )
Assertion ntrclsrcomplex
|- ( ph -> ( B \ S ) e. ~P B )

Proof

Step Hyp Ref Expression
1 ntrclsbex.d
 |-  D = ( O ` B )
2 ntrclsbex.r
 |-  ( ph -> I D K )
3 1 2 ntrclsbex
 |-  ( ph -> B e. _V )
4 difssd
 |-  ( ph -> ( B \ S ) C_ B )
5 3 4 sselpwd
 |-  ( ph -> ( B \ S ) e. ~P B )