Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 25-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrclsbex.d | |- D = ( O ` B ) | |
| ntrclsbex.r | |- ( ph -> I D K ) | ||
| Assertion | ntrclsrcomplex | |- ( ph -> ( B \ S ) e. ~P B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ntrclsbex.d | |- D = ( O ` B ) | |
| 2 | ntrclsbex.r | |- ( ph -> I D K ) | |
| 3 | 1 2 | ntrclsbex | |- ( ph -> B e. _V ) | 
| 4 | difssd | |- ( ph -> ( B \ S ) C_ B ) | |
| 5 | 3 4 | sselpwd | |- ( ph -> ( B \ S ) e. ~P B ) |