Metamath Proof Explorer


Theorem ntrclsrcomplex

Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 25-Jun-2021)

Ref Expression
Hypotheses ntrclsbex.d D=OB
ntrclsbex.r φIDK
Assertion ntrclsrcomplex φBS𝒫B

Proof

Step Hyp Ref Expression
1 ntrclsbex.d D=OB
2 ntrclsbex.r φIDK
3 1 2 ntrclsbex φBV
4 difssd φBSB
5 3 4 sselpwd φBS𝒫B