| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clscld.1 |  |-  X = U. J | 
						
							| 2 |  | difss |  |-  ( X \ A ) C_ X | 
						
							| 3 | 1 | ntrval2 |  |-  ( ( J e. Top /\ ( X \ A ) C_ X ) -> ( ( int ` J ) ` ( X \ A ) ) = ( X \ ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) | 
						
							| 4 | 2 3 | mpan2 |  |-  ( J e. Top -> ( ( int ` J ) ` ( X \ A ) ) = ( X \ ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` ( X \ A ) ) = ( X \ ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) | 
						
							| 6 |  | simpr |  |-  ( ( J e. Top /\ A C_ X ) -> A C_ X ) | 
						
							| 7 |  | dfss4 |  |-  ( A C_ X <-> ( X \ ( X \ A ) ) = A ) | 
						
							| 8 | 6 7 | sylib |  |-  ( ( J e. Top /\ A C_ X ) -> ( X \ ( X \ A ) ) = A ) | 
						
							| 9 | 8 | fveq2d |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) = ( ( cls ` J ) ` A ) ) | 
						
							| 10 | 9 | difeq2d |  |-  ( ( J e. Top /\ A C_ X ) -> ( X \ ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) = ( X \ ( ( cls ` J ) ` A ) ) ) | 
						
							| 11 | 5 10 | eqtrd |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` ( X \ A ) ) = ( X \ ( ( cls ` J ) ` A ) ) ) |