| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clscld.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | difss | ⊢ ( 𝑋  ∖  𝐴 )  ⊆  𝑋 | 
						
							| 3 | 1 | ntrval2 | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑋  ∖  𝐴 )  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝐴 ) )  =  ( 𝑋  ∖  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  ( 𝑋  ∖  𝐴 ) ) ) ) ) | 
						
							| 4 | 2 3 | mpan2 | ⊢ ( 𝐽  ∈  Top  →  ( ( int ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝐴 ) )  =  ( 𝑋  ∖  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  ( 𝑋  ∖  𝐴 ) ) ) ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝐴 ) )  =  ( 𝑋  ∖  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  ( 𝑋  ∖  𝐴 ) ) ) ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  𝐴  ⊆  𝑋 ) | 
						
							| 7 |  | dfss4 | ⊢ ( 𝐴  ⊆  𝑋  ↔  ( 𝑋  ∖  ( 𝑋  ∖  𝐴 ) )  =  𝐴 ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( 𝑋  ∖  ( 𝑋  ∖  𝐴 ) )  =  𝐴 ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  ( 𝑋  ∖  𝐴 ) ) )  =  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 10 | 9 | difeq2d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( 𝑋  ∖  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  ( 𝑋  ∖  𝐴 ) ) ) )  =  ( 𝑋  ∖  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 11 | 5 10 | eqtrd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝐴 ) )  =  ( 𝑋  ∖  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |