Metamath Proof Explorer


Theorem ntrdif

Description: An interior of a complement is the complement of the closure. This set is also known as the exterior of A . (Contributed by Jeff Hankins, 31-Aug-2009)

Ref Expression
Hypothesis clscld.1 𝑋 = 𝐽
Assertion ntrdif ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 clscld.1 𝑋 = 𝐽
2 difss ( 𝑋𝐴 ) ⊆ 𝑋
3 1 ntrval2 ( ( 𝐽 ∈ Top ∧ ( 𝑋𝐴 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋𝐴 ) ) ) ) )
4 2 3 mpan2 ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋𝐴 ) ) ) ) )
5 4 adantr ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋𝐴 ) ) ) ) )
6 simpr ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → 𝐴𝑋 )
7 dfss4 ( 𝐴𝑋 ↔ ( 𝑋 ∖ ( 𝑋𝐴 ) ) = 𝐴 )
8 6 7 sylib ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → ( 𝑋 ∖ ( 𝑋𝐴 ) ) = 𝐴 )
9 8 fveq2d ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋𝐴 ) ) ) = ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )
10 9 difeq2d ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝑋𝐴 ) ) ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) )
11 5 10 eqtrd ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) )