Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrnei.o | |- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
|
ntrnei.f | |- F = ( ~P B O B ) |
||
ntrnei.r | |- ( ph -> I F N ) |
||
Assertion | ntrneircomplex | |- ( ph -> ( B \ S ) e. ~P B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | |- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
|
2 | ntrnei.f | |- F = ( ~P B O B ) |
|
3 | ntrnei.r | |- ( ph -> I F N ) |
|
4 | 1 2 3 | ntrneibex | |- ( ph -> B e. _V ) |
5 | difssd | |- ( ph -> ( B \ S ) C_ B ) |
|
6 | 4 5 | sselpwd | |- ( ph -> ( B \ S ) e. ~P B ) |