Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrnei.o | |- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | |
| ntrnei.f | |- F = ( ~P B O B ) | ||
| ntrnei.r | |- ( ph -> I F N ) | ||
| Assertion | ntrneircomplex | |- ( ph -> ( B \ S ) e. ~P B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ntrnei.o |  |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | |
| 2 | ntrnei.f | |- F = ( ~P B O B ) | |
| 3 | ntrnei.r | |- ( ph -> I F N ) | |
| 4 | 1 2 3 | ntrneibex | |- ( ph -> B e. _V ) | 
| 5 | difssd | |- ( ph -> ( B \ S ) C_ B ) | |
| 6 | 4 5 | sselpwd | |- ( ph -> ( B \ S ) e. ~P B ) |