Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrnei.o | ⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) | |
ntrnei.f | ⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) | ||
ntrnei.r | ⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) | ||
Assertion | ntrneircomplex | ⊢ ( 𝜑 → ( 𝐵 ∖ 𝑆 ) ∈ 𝒫 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | ⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) | |
2 | ntrnei.f | ⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) | |
3 | ntrnei.r | ⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) | |
4 | 1 2 3 | ntrneibex | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
5 | difssd | ⊢ ( 𝜑 → ( 𝐵 ∖ 𝑆 ) ⊆ 𝐵 ) | |
6 | 4 5 | sselpwd | ⊢ ( 𝜑 → ( 𝐵 ∖ 𝑆 ) ∈ 𝒫 𝐵 ) |