Step |
Hyp |
Ref |
Expression |
1 |
|
ntrnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
2 |
|
ntrnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
3 |
|
ntrnei.r |
⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) |
4 |
|
oveq2 |
⊢ ( 𝑖 = 𝑎 → ( 𝒫 𝑗 ↑m 𝑖 ) = ( 𝒫 𝑗 ↑m 𝑎 ) ) |
5 |
|
rabeq |
⊢ ( 𝑖 = 𝑎 → { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } = { 𝑚 ∈ 𝑎 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) |
6 |
5
|
mpteq2dv |
⊢ ( 𝑖 = 𝑎 → ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) = ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑎 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) |
7 |
4 6
|
mpteq12dv |
⊢ ( 𝑖 = 𝑎 → ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) = ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑎 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑎 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
8 |
|
pweq |
⊢ ( 𝑗 = 𝑏 → 𝒫 𝑗 = 𝒫 𝑏 ) |
9 |
8
|
oveq1d |
⊢ ( 𝑗 = 𝑏 → ( 𝒫 𝑗 ↑m 𝑎 ) = ( 𝒫 𝑏 ↑m 𝑎 ) ) |
10 |
|
mpteq1 |
⊢ ( 𝑗 = 𝑏 → ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑎 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) = ( 𝑙 ∈ 𝑏 ↦ { 𝑚 ∈ 𝑎 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) |
11 |
9 10
|
mpteq12dv |
⊢ ( 𝑗 = 𝑏 → ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑎 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑎 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) = ( 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝑎 ) ↦ ( 𝑙 ∈ 𝑏 ↦ { 𝑚 ∈ 𝑎 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
12 |
7 11
|
cbvmpov |
⊢ ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝑎 ) ↦ ( 𝑙 ∈ 𝑏 ↦ { 𝑚 ∈ 𝑎 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
13 |
1 12
|
eqtri |
⊢ 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝑎 ) ↦ ( 𝑙 ∈ 𝑏 ↦ { 𝑚 ∈ 𝑎 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
14 |
2
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) ) |
15 |
13 3 14
|
brovmptimex2 |
⊢ ( 𝜑 → 𝐵 ∈ V ) |