Metamath Proof Explorer


Theorem ntrneibex

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then the base set exists. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
Assertion ntrneibex ( 𝜑𝐵 ∈ V )

Proof

Step Hyp Ref Expression
1 ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
3 ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
4 oveq2 ( 𝑖 = 𝑎 → ( 𝒫 𝑗m 𝑖 ) = ( 𝒫 𝑗m 𝑎 ) )
5 rabeq ( 𝑖 = 𝑎 → { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } = { 𝑚𝑎𝑙 ∈ ( 𝑘𝑚 ) } )
6 5 mpteq2dv ( 𝑖 = 𝑎 → ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) = ( 𝑙𝑗 ↦ { 𝑚𝑎𝑙 ∈ ( 𝑘𝑚 ) } ) )
7 4 6 mpteq12dv ( 𝑖 = 𝑎 → ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) = ( 𝑘 ∈ ( 𝒫 𝑗m 𝑎 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑎𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
8 pweq ( 𝑗 = 𝑏 → 𝒫 𝑗 = 𝒫 𝑏 )
9 8 oveq1d ( 𝑗 = 𝑏 → ( 𝒫 𝑗m 𝑎 ) = ( 𝒫 𝑏m 𝑎 ) )
10 mpteq1 ( 𝑗 = 𝑏 → ( 𝑙𝑗 ↦ { 𝑚𝑎𝑙 ∈ ( 𝑘𝑚 ) } ) = ( 𝑙𝑏 ↦ { 𝑚𝑎𝑙 ∈ ( 𝑘𝑚 ) } ) )
11 9 10 mpteq12dv ( 𝑗 = 𝑏 → ( 𝑘 ∈ ( 𝒫 𝑗m 𝑎 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑎𝑙 ∈ ( 𝑘𝑚 ) } ) ) = ( 𝑘 ∈ ( 𝒫 𝑏m 𝑎 ) ↦ ( 𝑙𝑏 ↦ { 𝑚𝑎𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
12 7 11 cbvmpov ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) ) = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑏m 𝑎 ) ↦ ( 𝑙𝑏 ↦ { 𝑚𝑎𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
13 1 12 eqtri 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑏m 𝑎 ) ↦ ( 𝑙𝑏 ↦ { 𝑚𝑎𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
14 2 a1i ( 𝜑𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) )
15 13 3 14 brovmptimex2 ( 𝜑𝐵 ∈ V )