| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o | ⊢ 𝑂  =  ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 2 |  | ntrnei.f | ⊢ 𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 3 |  | ntrnei.r | ⊢ ( 𝜑  →  𝐼 𝐹 𝑁 ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑖  =  𝑎  →  ( 𝒫  𝑗  ↑m  𝑖 )  =  ( 𝒫  𝑗  ↑m  𝑎 ) ) | 
						
							| 5 |  | rabeq | ⊢ ( 𝑖  =  𝑎  →  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) }  =  { 𝑚  ∈  𝑎  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) | 
						
							| 6 | 5 | mpteq2dv | ⊢ ( 𝑖  =  𝑎  →  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } )  =  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑎  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) | 
						
							| 7 | 4 6 | mpteq12dv | ⊢ ( 𝑖  =  𝑎  →  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) )  =  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑎 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑎  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 8 |  | pweq | ⊢ ( 𝑗  =  𝑏  →  𝒫  𝑗  =  𝒫  𝑏 ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑗  =  𝑏  →  ( 𝒫  𝑗  ↑m  𝑎 )  =  ( 𝒫  𝑏  ↑m  𝑎 ) ) | 
						
							| 10 |  | mpteq1 | ⊢ ( 𝑗  =  𝑏  →  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑎  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } )  =  ( 𝑙  ∈  𝑏  ↦  { 𝑚  ∈  𝑎  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) | 
						
							| 11 | 9 10 | mpteq12dv | ⊢ ( 𝑗  =  𝑏  →  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑎 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑎  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) )  =  ( 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝑎 )  ↦  ( 𝑙  ∈  𝑏  ↦  { 𝑚  ∈  𝑎  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 12 | 7 11 | cbvmpov | ⊢ ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) )  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝑎 )  ↦  ( 𝑙  ∈  𝑏  ↦  { 𝑚  ∈  𝑎  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 13 | 1 12 | eqtri | ⊢ 𝑂  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝑎 )  ↦  ( 𝑙  ∈  𝑏  ↦  { 𝑚  ∈  𝑎  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 14 | 2 | a1i | ⊢ ( 𝜑  →  𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) ) | 
						
							| 15 | 13 3 14 | brovmptimex2 | ⊢ ( 𝜑  →  𝐵  ∈  V ) |