Metamath Proof Explorer


Theorem ntrneibex

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then the base set exists. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneibex φ B V

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 oveq2 i = a 𝒫 j i = 𝒫 j a
5 rabeq i = a m i | l k m = m a | l k m
6 5 mpteq2dv i = a l j m i | l k m = l j m a | l k m
7 4 6 mpteq12dv i = a k 𝒫 j i l j m i | l k m = k 𝒫 j a l j m a | l k m
8 pweq j = b 𝒫 j = 𝒫 b
9 8 oveq1d j = b 𝒫 j a = 𝒫 b a
10 mpteq1 j = b l j m a | l k m = l b m a | l k m
11 9 10 mpteq12dv j = b k 𝒫 j a l j m a | l k m = k 𝒫 b a l b m a | l k m
12 7 11 cbvmpov i V , j V k 𝒫 j i l j m i | l k m = a V , b V k 𝒫 b a l b m a | l k m
13 1 12 eqtri O = a V , b V k 𝒫 b a l b m a | l k m
14 2 a1i φ F = 𝒫 B O B
15 13 3 14 brovmptimex2 φ B V