| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numma.1 | 
							 |-  T e. NN0  | 
						
						
							| 2 | 
							
								
							 | 
							numma.2 | 
							 |-  A e. NN0  | 
						
						
							| 3 | 
							
								
							 | 
							numma.3 | 
							 |-  B e. NN0  | 
						
						
							| 4 | 
							
								
							 | 
							numma.4 | 
							 |-  C e. NN0  | 
						
						
							| 5 | 
							
								
							 | 
							numma.5 | 
							 |-  D e. NN0  | 
						
						
							| 6 | 
							
								
							 | 
							numma.6 | 
							 |-  M = ( ( T x. A ) + B )  | 
						
						
							| 7 | 
							
								
							 | 
							numma.7 | 
							 |-  N = ( ( T x. C ) + D )  | 
						
						
							| 8 | 
							
								
							 | 
							numma.8 | 
							 |-  P e. NN0  | 
						
						
							| 9 | 
							
								
							 | 
							numma.9 | 
							 |-  ( ( A x. P ) + C ) = E  | 
						
						
							| 10 | 
							
								
							 | 
							numma.10 | 
							 |-  ( ( B x. P ) + D ) = F  | 
						
						
							| 11 | 
							
								6
							 | 
							oveq1i | 
							 |-  ( M x. P ) = ( ( ( T x. A ) + B ) x. P )  | 
						
						
							| 12 | 
							
								11 7
							 | 
							oveq12i | 
							 |-  ( ( M x. P ) + N ) = ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) )  | 
						
						
							| 13 | 
							
								1
							 | 
							nn0cni | 
							 |-  T e. CC  | 
						
						
							| 14 | 
							
								2
							 | 
							nn0cni | 
							 |-  A e. CC  | 
						
						
							| 15 | 
							
								8
							 | 
							nn0cni | 
							 |-  P e. CC  | 
						
						
							| 16 | 
							
								14 15
							 | 
							mulcli | 
							 |-  ( A x. P ) e. CC  | 
						
						
							| 17 | 
							
								4
							 | 
							nn0cni | 
							 |-  C e. CC  | 
						
						
							| 18 | 
							
								13 16 17
							 | 
							adddii | 
							 |-  ( T x. ( ( A x. P ) + C ) ) = ( ( T x. ( A x. P ) ) + ( T x. C ) )  | 
						
						
							| 19 | 
							
								13 14 15
							 | 
							mulassi | 
							 |-  ( ( T x. A ) x. P ) = ( T x. ( A x. P ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq1i | 
							 |-  ( ( ( T x. A ) x. P ) + ( T x. C ) ) = ( ( T x. ( A x. P ) ) + ( T x. C ) )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							eqtr4i | 
							 |-  ( T x. ( ( A x. P ) + C ) ) = ( ( ( T x. A ) x. P ) + ( T x. C ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							oveq1i | 
							 |-  ( ( T x. ( ( A x. P ) + C ) ) + ( ( B x. P ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( T x. C ) ) + ( ( B x. P ) + D ) )  | 
						
						
							| 23 | 
							
								13 14
							 | 
							mulcli | 
							 |-  ( T x. A ) e. CC  | 
						
						
							| 24 | 
							
								3
							 | 
							nn0cni | 
							 |-  B e. CC  | 
						
						
							| 25 | 
							
								23 24 15
							 | 
							adddiri | 
							 |-  ( ( ( T x. A ) + B ) x. P ) = ( ( ( T x. A ) x. P ) + ( B x. P ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							oveq1i | 
							 |-  ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( B x. P ) ) + ( ( T x. C ) + D ) )  | 
						
						
							| 27 | 
							
								23 15
							 | 
							mulcli | 
							 |-  ( ( T x. A ) x. P ) e. CC  | 
						
						
							| 28 | 
							
								13 17
							 | 
							mulcli | 
							 |-  ( T x. C ) e. CC  | 
						
						
							| 29 | 
							
								24 15
							 | 
							mulcli | 
							 |-  ( B x. P ) e. CC  | 
						
						
							| 30 | 
							
								5
							 | 
							nn0cni | 
							 |-  D e. CC  | 
						
						
							| 31 | 
							
								27 28 29 30
							 | 
							add4i | 
							 |-  ( ( ( ( T x. A ) x. P ) + ( T x. C ) ) + ( ( B x. P ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( B x. P ) ) + ( ( T x. C ) + D ) )  | 
						
						
							| 32 | 
							
								26 31
							 | 
							eqtr4i | 
							 |-  ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( T x. C ) ) + ( ( B x. P ) + D ) )  | 
						
						
							| 33 | 
							
								22 32
							 | 
							eqtr4i | 
							 |-  ( ( T x. ( ( A x. P ) + C ) ) + ( ( B x. P ) + D ) ) = ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) )  | 
						
						
							| 34 | 
							
								9
							 | 
							oveq2i | 
							 |-  ( T x. ( ( A x. P ) + C ) ) = ( T x. E )  | 
						
						
							| 35 | 
							
								34 10
							 | 
							oveq12i | 
							 |-  ( ( T x. ( ( A x. P ) + C ) ) + ( ( B x. P ) + D ) ) = ( ( T x. E ) + F )  | 
						
						
							| 36 | 
							
								12 33 35
							 | 
							3eqtr2i | 
							 |-  ( ( M x. P ) + N ) = ( ( T x. E ) + F )  |