Metamath Proof Explorer


Theorem nvm

Description: Vector subtraction in terms of group division operation. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvm.1
|- X = ( BaseSet ` U )
nvm.2
|- G = ( +v ` U )
nvm.3
|- M = ( -v ` U )
nvm.6
|- N = ( /g ` G )
Assertion nvm
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) = ( A N B ) )

Proof

Step Hyp Ref Expression
1 nvm.1
 |-  X = ( BaseSet ` U )
2 nvm.2
 |-  G = ( +v ` U )
3 nvm.3
 |-  M = ( -v ` U )
4 nvm.6
 |-  N = ( /g ` G )
5 2 3 vsfval
 |-  M = ( /g ` G )
6 5 4 eqtr4i
 |-  M = N
7 6 oveqi
 |-  ( A M B ) = ( A N B )
8 7 a1i
 |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) = ( A N B ) )