Step |
Hyp |
Ref |
Expression |
1 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
2 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
3 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
4 |
2 3
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) ) |
5 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
6 |
2 5
|
unitnegcl |
|- ( ( R e. Ring /\ ( 1r ` R ) e. ( Unit ` R ) ) -> ( ( invg ` R ) ` ( 1r ` R ) ) e. ( Unit ` R ) ) |
7 |
1 4 6
|
syl2anc2 |
|- ( R e. NzRing -> ( ( invg ` R ) ` ( 1r ` R ) ) e. ( Unit ` R ) ) |
8 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
9 |
2 8
|
nzrunit |
|- ( ( R e. NzRing /\ ( ( invg ` R ) ` ( 1r ` R ) ) e. ( Unit ` R ) ) -> ( ( invg ` R ) ` ( 1r ` R ) ) =/= ( 0g ` R ) ) |
10 |
7 9
|
mpdan |
|- ( R e. NzRing -> ( ( invg ` R ) ` ( 1r ` R ) ) =/= ( 0g ` R ) ) |