Metamath Proof Explorer


Theorem oaomoecl

Description: The operations of addition, multiplication, and exponentiation are closed. Remark 2.8 of Schloeder p. 5. See oacl , omcl , oecl . (Contributed by RP, 18-Jan-2025)

Ref Expression
Assertion oaomoecl
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. On /\ ( A .o B ) e. On /\ ( A ^o B ) e. On ) )

Proof

Step Hyp Ref Expression
1 oacl
 |-  ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On )
2 omcl
 |-  ( ( A e. On /\ B e. On ) -> ( A .o B ) e. On )
3 oecl
 |-  ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On )
4 1 2 3 3jca
 |-  ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. On /\ ( A .o B ) e. On /\ ( A ^o B ) e. On ) )