Metamath Proof Explorer


Theorem onsupsucismax

Description: If the union of a set of ordinals is a successor ordinal, then that union is the maximum element of the set. This is not a bijection because sets where the maximum element is zero or a limit ordinal exist. Lemma 2.11 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onsupsucismax
|- ( ( A C_ On /\ A e. V ) -> ( E. b e. On U. A = suc b -> U. A e. A ) )

Proof

Step Hyp Ref Expression
1 onsupnmax
 |-  ( A C_ On -> ( -. U. A e. A -> U. A = U. U. A ) )
2 ssorduni
 |-  ( A C_ On -> Ord U. A )
3 orduninsuc
 |-  ( Ord U. A -> ( U. A = U. U. A <-> -. E. b e. On U. A = suc b ) )
4 2 3 syl
 |-  ( A C_ On -> ( U. A = U. U. A <-> -. E. b e. On U. A = suc b ) )
5 1 4 sylibd
 |-  ( A C_ On -> ( -. U. A e. A -> -. E. b e. On U. A = suc b ) )
6 5 con4d
 |-  ( A C_ On -> ( E. b e. On U. A = suc b -> U. A e. A ) )
7 6 adantr
 |-  ( ( A C_ On /\ A e. V ) -> ( E. b e. On U. A = suc b -> U. A e. A ) )