Metamath Proof Explorer


Theorem onsssupeqcond

Description: If for every element of a set of ordinals there is an element of a subset which is at least as large, then the union of the set and the subset is the same. Lemma 2.12 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onsssupeqcond
|- ( ( A C_ On /\ A e. V ) -> ( ( B C_ A /\ A. a e. A E. b e. B a C_ b ) -> U. A = U. B ) )

Proof

Step Hyp Ref Expression
1 uniss2
 |-  ( A. a e. A E. b e. B a C_ b -> U. A C_ U. B )
2 1 adantl
 |-  ( ( B C_ A /\ A. a e. A E. b e. B a C_ b ) -> U. A C_ U. B )
3 uniss
 |-  ( B C_ A -> U. B C_ U. A )
4 3 adantr
 |-  ( ( B C_ A /\ A. a e. A E. b e. B a C_ b ) -> U. B C_ U. A )
5 2 4 eqssd
 |-  ( ( B C_ A /\ A. a e. A E. b e. B a C_ b ) -> U. A = U. B )
6 5 a1i
 |-  ( ( A C_ On /\ A e. V ) -> ( ( B C_ A /\ A. a e. A E. b e. B a C_ b ) -> U. A = U. B ) )