Description: If for every element of a set of ordinals there is an element of a subset which is at least as large, then the union of the set and the subset is the same. Lemma 2.12 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsssupeqcond | |- ( ( A C_ On /\ A e. V ) -> ( ( B C_ A /\ A. a e. A E. b e. B a C_ b ) -> U. A = U. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss2 | |- ( A. a e. A E. b e. B a C_ b -> U. A C_ U. B ) |
|
2 | 1 | adantl | |- ( ( B C_ A /\ A. a e. A E. b e. B a C_ b ) -> U. A C_ U. B ) |
3 | uniss | |- ( B C_ A -> U. B C_ U. A ) |
|
4 | 3 | adantr | |- ( ( B C_ A /\ A. a e. A E. b e. B a C_ b ) -> U. B C_ U. A ) |
5 | 2 4 | eqssd | |- ( ( B C_ A /\ A. a e. A E. b e. B a C_ b ) -> U. A = U. B ) |
6 | 5 | a1i | |- ( ( A C_ On /\ A e. V ) -> ( ( B C_ A /\ A. a e. A E. b e. B a C_ b ) -> U. A = U. B ) ) |