Description: An ordinal which is a limit ordinal is equal to its supremum. Lemma 2.13 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | limexissup | |- ( ( Lim A /\ A e. V ) -> A = sup ( A , On , _E ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limuni | |- ( Lim A -> A = U. A ) |
|
2 | 1 | adantr | |- ( ( Lim A /\ A e. V ) -> A = U. A ) |
3 | limord | |- ( Lim A -> Ord A ) |
|
4 | ordsson | |- ( Ord A -> A C_ On ) |
|
5 | 3 4 | syl | |- ( Lim A -> A C_ On ) |
6 | onsupuni | |- ( ( A C_ On /\ A e. V ) -> sup ( A , On , _E ) = U. A ) |
|
7 | 5 6 | sylan | |- ( ( Lim A /\ A e. V ) -> sup ( A , On , _E ) = U. A ) |
8 | 2 7 | eqtr4d | |- ( ( Lim A /\ A e. V ) -> A = sup ( A , On , _E ) ) |