Metamath Proof Explorer


Theorem limiun

Description: A limit ordinal is the union of its elements, indexed union version. Lemma 2.13 of Schloeder p. 5. See limuni . (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion limiun
|- ( Lim A -> A = U_ x e. A x )

Proof

Step Hyp Ref Expression
1 limuni
 |-  ( Lim A -> A = U. A )
2 uniiun
 |-  U. A = U_ x e. A x
3 1 2 eqtrdi
 |-  ( Lim A -> A = U_ x e. A x )