Metamath Proof Explorer


Theorem limexissupab

Description: An ordinal which is a limit ordinal is equal to the supremum of the class of all its elements. Lemma 2.13 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion limexissupab
|- ( ( Lim A /\ A e. V ) -> A = sup ( { x | x e. A } , On , _E ) )

Proof

Step Hyp Ref Expression
1 limuni
 |-  ( Lim A -> A = U. A )
2 1 adantr
 |-  ( ( Lim A /\ A e. V ) -> A = U. A )
3 limord
 |-  ( Lim A -> Ord A )
4 ordsson
 |-  ( Ord A -> A C_ On )
5 3 4 syl
 |-  ( Lim A -> A C_ On )
6 onsupuni
 |-  ( ( A C_ On /\ A e. V ) -> sup ( A , On , _E ) = U. A )
7 5 6 sylan
 |-  ( ( Lim A /\ A e. V ) -> sup ( A , On , _E ) = U. A )
8 abid1
 |-  A = { x | x e. A }
9 supeq1
 |-  ( A = { x | x e. A } -> sup ( A , On , _E ) = sup ( { x | x e. A } , On , _E ) )
10 8 9 mp1i
 |-  ( ( Lim A /\ A e. V ) -> sup ( A , On , _E ) = sup ( { x | x e. A } , On , _E ) )
11 2 7 10 3eqtr2d
 |-  ( ( Lim A /\ A e. V ) -> A = sup ( { x | x e. A } , On , _E ) )