| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limuni |
|- ( Lim A -> A = U. A ) |
| 2 |
1
|
adantr |
|- ( ( Lim A /\ A e. V ) -> A = U. A ) |
| 3 |
|
limord |
|- ( Lim A -> Ord A ) |
| 4 |
|
ordsson |
|- ( Ord A -> A C_ On ) |
| 5 |
3 4
|
syl |
|- ( Lim A -> A C_ On ) |
| 6 |
|
onsupuni |
|- ( ( A C_ On /\ A e. V ) -> sup ( A , On , _E ) = U. A ) |
| 7 |
5 6
|
sylan |
|- ( ( Lim A /\ A e. V ) -> sup ( A , On , _E ) = U. A ) |
| 8 |
|
abid1 |
|- A = { x | x e. A } |
| 9 |
|
supeq1 |
|- ( A = { x | x e. A } -> sup ( A , On , _E ) = sup ( { x | x e. A } , On , _E ) ) |
| 10 |
8 9
|
mp1i |
|- ( ( Lim A /\ A e. V ) -> sup ( A , On , _E ) = sup ( { x | x e. A } , On , _E ) ) |
| 11 |
2 7 10
|
3eqtr2d |
|- ( ( Lim A /\ A e. V ) -> A = sup ( { x | x e. A } , On , _E ) ) |