Metamath Proof Explorer


Theorem limexissupab

Description: An ordinal which is a limit ordinal is equal to the supremum of the class of all its elements. Lemma 2.13 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion limexissupab Lim A A V A = sup x | x A On E

Proof

Step Hyp Ref Expression
1 limuni Lim A A = A
2 1 adantr Lim A A V A = A
3 limord Lim A Ord A
4 ordsson Ord A A On
5 3 4 syl Lim A A On
6 onsupuni A On A V sup A On E = A
7 5 6 sylan Lim A A V sup A On E = A
8 abid1 A = x | x A
9 supeq1 A = x | x A sup A On E = sup x | x A On E
10 8 9 mp1i Lim A A V sup A On E = sup x | x A On E
11 2 7 10 3eqtr2d Lim A A V A = sup x | x A On E