Metamath Proof Explorer


Theorem onsupuni

Description: The supremum of a set of ordinals is the union of that set. Lemma 2.10 of Schloeder p. 5. (Contributed by RP, 19-Jan-2025)

Ref Expression
Assertion onsupuni A On A V sup A On E = A

Proof

Step Hyp Ref Expression
1 ssonuni A V A On A On
2 1 impcom A On A V A On
3 elssuni y A y A
4 3 rgen y A y A
5 simpl A On A V A On
6 5 sselda A On A V y A y On
7 2 adantr A On A V y A A On
8 ontri1 y On A On y A ¬ A y
9 6 7 8 syl2anc A On A V y A y A ¬ A y
10 epel A E y A y
11 10 notbii ¬ A E y ¬ A y
12 9 11 bitr4di A On A V y A y A ¬ A E y
13 12 ralbidva A On A V y A y A y A ¬ A E y
14 4 13 mpbii A On A V y A ¬ A E y
15 2 adantr A On A V y On A On
16 epelg A On y E A y A
17 15 16 syl A On A V y On y E A y A
18 17 biimpd A On A V y On y E A y A
19 eluni2 y A x A y x
20 epel y E x y x
21 20 rexbii x A y E x x A y x
22 19 21 bitr4i y A x A y E x
23 18 22 imbitrdi A On A V y On y E A x A y E x
24 23 ralrimiva A On A V y On y E A x A y E x
25 epweon E We On
26 weso E We On E Or On
27 25 26 mp1i A On A V E Or On
28 27 eqsup A On A V A On y A ¬ A E y y On y E A x A y E x sup A On E = A
29 2 14 24 28 mp3and A On A V sup A On E = A