Metamath Proof Explorer


Theorem onsupuni

Description: The supremum of a set of ordinals is the union of that set. Lemma 2.10 of Schloeder p. 5. (Contributed by RP, 19-Jan-2025)

Ref Expression
Assertion onsupuni ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → sup ( 𝐴 , On , E ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 ssonuni ( 𝐴𝑉 → ( 𝐴 ⊆ On → 𝐴 ∈ On ) )
2 1 impcom ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → 𝐴 ∈ On )
3 elssuni ( 𝑦𝐴𝑦 𝐴 )
4 3 rgen 𝑦𝐴 𝑦 𝐴
5 simpl ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → 𝐴 ⊆ On )
6 5 sselda ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ 𝑦𝐴 ) → 𝑦 ∈ On )
7 2 adantr ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ 𝑦𝐴 ) → 𝐴 ∈ On )
8 ontri1 ( ( 𝑦 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑦 𝐴 ↔ ¬ 𝐴𝑦 ) )
9 6 7 8 syl2anc ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ 𝑦𝐴 ) → ( 𝑦 𝐴 ↔ ¬ 𝐴𝑦 ) )
10 epel ( 𝐴 E 𝑦 𝐴𝑦 )
11 10 notbii ( ¬ 𝐴 E 𝑦 ↔ ¬ 𝐴𝑦 )
12 9 11 bitr4di ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ 𝑦𝐴 ) → ( 𝑦 𝐴 ↔ ¬ 𝐴 E 𝑦 ) )
13 12 ralbidva ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → ( ∀ 𝑦𝐴 𝑦 𝐴 ↔ ∀ 𝑦𝐴 ¬ 𝐴 E 𝑦 ) )
14 4 13 mpbii ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → ∀ 𝑦𝐴 ¬ 𝐴 E 𝑦 )
15 2 adantr ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ 𝑦 ∈ On ) → 𝐴 ∈ On )
16 epelg ( 𝐴 ∈ On → ( 𝑦 E 𝐴𝑦 𝐴 ) )
17 15 16 syl ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ 𝑦 ∈ On ) → ( 𝑦 E 𝐴𝑦 𝐴 ) )
18 17 biimpd ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ 𝑦 ∈ On ) → ( 𝑦 E 𝐴𝑦 𝐴 ) )
19 eluni2 ( 𝑦 𝐴 ↔ ∃ 𝑥𝐴 𝑦𝑥 )
20 epel ( 𝑦 E 𝑥𝑦𝑥 )
21 20 rexbii ( ∃ 𝑥𝐴 𝑦 E 𝑥 ↔ ∃ 𝑥𝐴 𝑦𝑥 )
22 19 21 bitr4i ( 𝑦 𝐴 ↔ ∃ 𝑥𝐴 𝑦 E 𝑥 )
23 18 22 imbitrdi ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ 𝑦 ∈ On ) → ( 𝑦 E 𝐴 → ∃ 𝑥𝐴 𝑦 E 𝑥 ) )
24 23 ralrimiva ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → ∀ 𝑦 ∈ On ( 𝑦 E 𝐴 → ∃ 𝑥𝐴 𝑦 E 𝑥 ) )
25 epweon E We On
26 weso ( E We On → E Or On )
27 25 26 mp1i ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → E Or On )
28 27 eqsup ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → ( ( 𝐴 ∈ On ∧ ∀ 𝑦𝐴 ¬ 𝐴 E 𝑦 ∧ ∀ 𝑦 ∈ On ( 𝑦 E 𝐴 → ∃ 𝑥𝐴 𝑦 E 𝑥 ) ) → sup ( 𝐴 , On , E ) = 𝐴 ) )
29 2 14 24 28 mp3and ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → sup ( 𝐴 , On , E ) = 𝐴 )