| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssonuni |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ⊆ On → ∪ 𝐴 ∈ On ) ) |
| 2 |
1
|
impcom |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ∪ 𝐴 ∈ On ) |
| 3 |
|
elssuni |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ⊆ ∪ 𝐴 ) |
| 4 |
3
|
rgen |
⊢ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ ∪ 𝐴 |
| 5 |
|
simpl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ⊆ On ) |
| 6 |
5
|
sselda |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
| 7 |
2
|
adantr |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐴 ) → ∪ 𝐴 ∈ On ) |
| 8 |
|
ontri1 |
⊢ ( ( 𝑦 ∈ On ∧ ∪ 𝐴 ∈ On ) → ( 𝑦 ⊆ ∪ 𝐴 ↔ ¬ ∪ 𝐴 ∈ 𝑦 ) ) |
| 9 |
6 7 8
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ⊆ ∪ 𝐴 ↔ ¬ ∪ 𝐴 ∈ 𝑦 ) ) |
| 10 |
|
epel |
⊢ ( ∪ 𝐴 E 𝑦 ↔ ∪ 𝐴 ∈ 𝑦 ) |
| 11 |
10
|
notbii |
⊢ ( ¬ ∪ 𝐴 E 𝑦 ↔ ¬ ∪ 𝐴 ∈ 𝑦 ) |
| 12 |
9 11
|
bitr4di |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ⊆ ∪ 𝐴 ↔ ¬ ∪ 𝐴 E 𝑦 ) ) |
| 13 |
12
|
ralbidva |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ ∪ 𝐴 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 E 𝑦 ) ) |
| 14 |
4 13
|
mpbii |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 E 𝑦 ) |
| 15 |
2
|
adantr |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑦 ∈ On ) → ∪ 𝐴 ∈ On ) |
| 16 |
|
epelg |
⊢ ( ∪ 𝐴 ∈ On → ( 𝑦 E ∪ 𝐴 ↔ 𝑦 ∈ ∪ 𝐴 ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑦 ∈ On ) → ( 𝑦 E ∪ 𝐴 ↔ 𝑦 ∈ ∪ 𝐴 ) ) |
| 18 |
17
|
biimpd |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑦 ∈ On ) → ( 𝑦 E ∪ 𝐴 → 𝑦 ∈ ∪ 𝐴 ) ) |
| 19 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ) |
| 20 |
|
epel |
⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) |
| 21 |
20
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 E 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ) |
| 22 |
19 21
|
bitr4i |
⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 E 𝑥 ) |
| 23 |
18 22
|
imbitrdi |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑦 ∈ On ) → ( 𝑦 E ∪ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑦 E 𝑥 ) ) |
| 24 |
23
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑦 ∈ On ( 𝑦 E ∪ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑦 E 𝑥 ) ) |
| 25 |
|
epweon |
⊢ E We On |
| 26 |
|
weso |
⊢ ( E We On → E Or On ) |
| 27 |
25 26
|
mp1i |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → E Or On ) |
| 28 |
27
|
eqsup |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ( ( ∪ 𝐴 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 E 𝑦 ∧ ∀ 𝑦 ∈ On ( 𝑦 E ∪ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑦 E 𝑥 ) ) → sup ( 𝐴 , On , E ) = ∪ 𝐴 ) ) |
| 29 |
2 14 24 28
|
mp3and |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → sup ( 𝐴 , On , E ) = ∪ 𝐴 ) |