Metamath Proof Explorer


Theorem limexissupab

Description: An ordinal which is a limit ordinal is equal to the supremum of the class of all its elements. Lemma 2.13 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion limexissupab ( ( Lim 𝐴𝐴𝑉 ) → 𝐴 = sup ( { 𝑥𝑥𝐴 } , On , E ) )

Proof

Step Hyp Ref Expression
1 limuni ( Lim 𝐴𝐴 = 𝐴 )
2 1 adantr ( ( Lim 𝐴𝐴𝑉 ) → 𝐴 = 𝐴 )
3 limord ( Lim 𝐴 → Ord 𝐴 )
4 ordsson ( Ord 𝐴𝐴 ⊆ On )
5 3 4 syl ( Lim 𝐴𝐴 ⊆ On )
6 onsupuni ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → sup ( 𝐴 , On , E ) = 𝐴 )
7 5 6 sylan ( ( Lim 𝐴𝐴𝑉 ) → sup ( 𝐴 , On , E ) = 𝐴 )
8 abid1 𝐴 = { 𝑥𝑥𝐴 }
9 supeq1 ( 𝐴 = { 𝑥𝑥𝐴 } → sup ( 𝐴 , On , E ) = sup ( { 𝑥𝑥𝐴 } , On , E ) )
10 8 9 mp1i ( ( Lim 𝐴𝐴𝑉 ) → sup ( 𝐴 , On , E ) = sup ( { 𝑥𝑥𝐴 } , On , E ) )
11 2 7 10 3eqtr2d ( ( Lim 𝐴𝐴𝑉 ) → 𝐴 = sup ( { 𝑥𝑥𝐴 } , On , E ) )