Step |
Hyp |
Ref |
Expression |
1 |
|
limuni |
⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) |
2 |
1
|
adantr |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐴 = ∪ 𝐴 ) |
3 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
4 |
|
ordsson |
⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) |
5 |
3 4
|
syl |
⊢ ( Lim 𝐴 → 𝐴 ⊆ On ) |
6 |
|
onsupuni |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → sup ( 𝐴 , On , E ) = ∪ 𝐴 ) |
7 |
5 6
|
sylan |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → sup ( 𝐴 , On , E ) = ∪ 𝐴 ) |
8 |
|
abid1 |
⊢ 𝐴 = { 𝑥 ∣ 𝑥 ∈ 𝐴 } |
9 |
|
supeq1 |
⊢ ( 𝐴 = { 𝑥 ∣ 𝑥 ∈ 𝐴 } → sup ( 𝐴 , On , E ) = sup ( { 𝑥 ∣ 𝑥 ∈ 𝐴 } , On , E ) ) |
10 |
8 9
|
mp1i |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → sup ( 𝐴 , On , E ) = sup ( { 𝑥 ∣ 𝑥 ∈ 𝐴 } , On , E ) ) |
11 |
2 7 10
|
3eqtr2d |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐴 = sup ( { 𝑥 ∣ 𝑥 ∈ 𝐴 } , On , E ) ) |