Description: Ordinal one is both a left and right identity of ordinal multiplication. Lemma 2.15 of Schloeder p. 5. See om1 and om1r for individual statements. (Contributed by RP, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | om1om1r | ⊢ ( 𝐴 ∈ On → ( ( 1o ·o 𝐴 ) = ( 𝐴 ·o 1o ) ∧ ( 𝐴 ·o 1o ) = 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om1r | ⊢ ( 𝐴 ∈ On → ( 1o ·o 𝐴 ) = 𝐴 ) | |
2 | om1 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o 1o ) = 𝐴 ) | |
3 | 1 2 | eqtr4d | ⊢ ( 𝐴 ∈ On → ( 1o ·o 𝐴 ) = ( 𝐴 ·o 1o ) ) |
4 | 3 2 | jca | ⊢ ( 𝐴 ∈ On → ( ( 1o ·o 𝐴 ) = ( 𝐴 ·o 1o ) ∧ ( 𝐴 ·o 1o ) = 𝐴 ) ) |