Description: Ordinal one is both a left and right identity of ordinal multiplication. Lemma 2.15 of Schloeder p. 5. See om1 and om1r for individual statements. (Contributed by RP, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | om1om1r | |- ( A e. On -> ( ( 1o .o A ) = ( A .o 1o ) /\ ( A .o 1o ) = A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om1r | |- ( A e. On -> ( 1o .o A ) = A ) |
|
2 | om1 | |- ( A e. On -> ( A .o 1o ) = A ) |
|
3 | 1 2 | eqtr4d | |- ( A e. On -> ( 1o .o A ) = ( A .o 1o ) ) |
4 | 3 2 | jca | |- ( A e. On -> ( ( 1o .o A ) = ( A .o 1o ) /\ ( A .o 1o ) = A ) ) |