Metamath Proof Explorer


Theorem om1om1r

Description: Ordinal one is both a left and right identity of ordinal multiplication. Lemma 2.15 of Schloeder p. 5. See om1 and om1r for individual statements. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion om1om1r
|- ( A e. On -> ( ( 1o .o A ) = ( A .o 1o ) /\ ( A .o 1o ) = A ) )

Proof

Step Hyp Ref Expression
1 om1r
 |-  ( A e. On -> ( 1o .o A ) = A )
2 om1
 |-  ( A e. On -> ( A .o 1o ) = A )
3 1 2 eqtr4d
 |-  ( A e. On -> ( 1o .o A ) = ( A .o 1o ) )
4 3 2 jca
 |-  ( A e. On -> ( ( 1o .o A ) = ( A .o 1o ) /\ ( A .o 1o ) = A ) )