| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oe0m |
|- ( A e. On -> ( (/) ^o A ) = ( 1o \ A ) ) |
| 2 |
|
nel02 |
|- ( A = (/) -> -. (/) e. A ) |
| 3 |
2
|
iffalsed |
|- ( A = (/) -> if ( (/) e. A , (/) , 1o ) = 1o ) |
| 4 |
|
difeq2 |
|- ( A = (/) -> ( 1o \ A ) = ( 1o \ (/) ) ) |
| 5 |
|
dif0 |
|- ( 1o \ (/) ) = 1o |
| 6 |
4 5
|
eqtrdi |
|- ( A = (/) -> ( 1o \ A ) = 1o ) |
| 7 |
3 6
|
eqtr4d |
|- ( A = (/) -> if ( (/) e. A , (/) , 1o ) = ( 1o \ A ) ) |
| 8 |
7
|
adantl |
|- ( ( A e. On /\ A = (/) ) -> if ( (/) e. A , (/) , 1o ) = ( 1o \ A ) ) |
| 9 |
|
iftrue |
|- ( (/) e. A -> if ( (/) e. A , (/) , 1o ) = (/) ) |
| 10 |
9
|
adantl |
|- ( ( A e. On /\ (/) e. A ) -> if ( (/) e. A , (/) , 1o ) = (/) ) |
| 11 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 12 |
|
ordgt0ge1 |
|- ( Ord A -> ( (/) e. A <-> 1o C_ A ) ) |
| 13 |
11 12
|
syl |
|- ( A e. On -> ( (/) e. A <-> 1o C_ A ) ) |
| 14 |
13
|
biimpa |
|- ( ( A e. On /\ (/) e. A ) -> 1o C_ A ) |
| 15 |
|
ssdif0 |
|- ( 1o C_ A <-> ( 1o \ A ) = (/) ) |
| 16 |
14 15
|
sylib |
|- ( ( A e. On /\ (/) e. A ) -> ( 1o \ A ) = (/) ) |
| 17 |
10 16
|
eqtr4d |
|- ( ( A e. On /\ (/) e. A ) -> if ( (/) e. A , (/) , 1o ) = ( 1o \ A ) ) |
| 18 |
|
on0eqel |
|- ( A e. On -> ( A = (/) \/ (/) e. A ) ) |
| 19 |
8 17 18
|
mpjaodan |
|- ( A e. On -> if ( (/) e. A , (/) , 1o ) = ( 1o \ A ) ) |
| 20 |
1 19
|
eqtr4d |
|- ( A e. On -> ( (/) ^o A ) = if ( (/) e. A , (/) , 1o ) ) |