Metamath Proof Explorer


Theorem oe0rif

Description: Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of Schloeder p. 6. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oe0rif
|- ( A e. On -> ( (/) ^o A ) = if ( (/) e. A , (/) , 1o ) )

Proof

Step Hyp Ref Expression
1 oe0m
 |-  ( A e. On -> ( (/) ^o A ) = ( 1o \ A ) )
2 nel02
 |-  ( A = (/) -> -. (/) e. A )
3 2 iffalsed
 |-  ( A = (/) -> if ( (/) e. A , (/) , 1o ) = 1o )
4 difeq2
 |-  ( A = (/) -> ( 1o \ A ) = ( 1o \ (/) ) )
5 dif0
 |-  ( 1o \ (/) ) = 1o
6 4 5 eqtrdi
 |-  ( A = (/) -> ( 1o \ A ) = 1o )
7 3 6 eqtr4d
 |-  ( A = (/) -> if ( (/) e. A , (/) , 1o ) = ( 1o \ A ) )
8 7 adantl
 |-  ( ( A e. On /\ A = (/) ) -> if ( (/) e. A , (/) , 1o ) = ( 1o \ A ) )
9 iftrue
 |-  ( (/) e. A -> if ( (/) e. A , (/) , 1o ) = (/) )
10 9 adantl
 |-  ( ( A e. On /\ (/) e. A ) -> if ( (/) e. A , (/) , 1o ) = (/) )
11 eloni
 |-  ( A e. On -> Ord A )
12 ordgt0ge1
 |-  ( Ord A -> ( (/) e. A <-> 1o C_ A ) )
13 11 12 syl
 |-  ( A e. On -> ( (/) e. A <-> 1o C_ A ) )
14 13 biimpa
 |-  ( ( A e. On /\ (/) e. A ) -> 1o C_ A )
15 ssdif0
 |-  ( 1o C_ A <-> ( 1o \ A ) = (/) )
16 14 15 sylib
 |-  ( ( A e. On /\ (/) e. A ) -> ( 1o \ A ) = (/) )
17 10 16 eqtr4d
 |-  ( ( A e. On /\ (/) e. A ) -> if ( (/) e. A , (/) , 1o ) = ( 1o \ A ) )
18 on0eqel
 |-  ( A e. On -> ( A = (/) \/ (/) e. A ) )
19 8 17 18 mpjaodan
 |-  ( A e. On -> if ( (/) e. A , (/) , 1o ) = ( 1o \ A ) )
20 1 19 eqtr4d
 |-  ( A e. On -> ( (/) ^o A ) = if ( (/) e. A , (/) , 1o ) )