Step |
Hyp |
Ref |
Expression |
1 |
|
oe0m |
⊢ ( 𝐴 ∈ On → ( ∅ ↑o 𝐴 ) = ( 1o ∖ 𝐴 ) ) |
2 |
|
nel02 |
⊢ ( 𝐴 = ∅ → ¬ ∅ ∈ 𝐴 ) |
3 |
2
|
iffalsed |
⊢ ( 𝐴 = ∅ → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = 1o ) |
4 |
|
difeq2 |
⊢ ( 𝐴 = ∅ → ( 1o ∖ 𝐴 ) = ( 1o ∖ ∅ ) ) |
5 |
|
dif0 |
⊢ ( 1o ∖ ∅ ) = 1o |
6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 1o ∖ 𝐴 ) = 1o ) |
7 |
3 6
|
eqtr4d |
⊢ ( 𝐴 = ∅ → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = ( 1o ∖ 𝐴 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 = ∅ ) → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = ( 1o ∖ 𝐴 ) ) |
9 |
|
iftrue |
⊢ ( ∅ ∈ 𝐴 → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = ∅ ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = ∅ ) |
11 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
12 |
|
ordgt0ge1 |
⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴 ) ) |
14 |
13
|
biimpa |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → 1o ⊆ 𝐴 ) |
15 |
|
ssdif0 |
⊢ ( 1o ⊆ 𝐴 ↔ ( 1o ∖ 𝐴 ) = ∅ ) |
16 |
14 15
|
sylib |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 1o ∖ 𝐴 ) = ∅ ) |
17 |
10 16
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = ( 1o ∖ 𝐴 ) ) |
18 |
|
on0eqel |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
19 |
8 17 18
|
mpjaodan |
⊢ ( 𝐴 ∈ On → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = ( 1o ∖ 𝐴 ) ) |
20 |
1 19
|
eqtr4d |
⊢ ( 𝐴 ∈ On → ( ∅ ↑o 𝐴 ) = if ( ∅ ∈ 𝐴 , ∅ , 1o ) ) |