Metamath Proof Explorer


Theorem oe0rif

Description: Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of Schloeder p. 6. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oe0rif ( 𝐴 ∈ On → ( ∅ ↑o 𝐴 ) = if ( ∅ ∈ 𝐴 , ∅ , 1o ) )

Proof

Step Hyp Ref Expression
1 oe0m ( 𝐴 ∈ On → ( ∅ ↑o 𝐴 ) = ( 1o𝐴 ) )
2 nel02 ( 𝐴 = ∅ → ¬ ∅ ∈ 𝐴 )
3 2 iffalsed ( 𝐴 = ∅ → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = 1o )
4 difeq2 ( 𝐴 = ∅ → ( 1o𝐴 ) = ( 1o ∖ ∅ ) )
5 dif0 ( 1o ∖ ∅ ) = 1o
6 4 5 eqtrdi ( 𝐴 = ∅ → ( 1o𝐴 ) = 1o )
7 3 6 eqtr4d ( 𝐴 = ∅ → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = ( 1o𝐴 ) )
8 7 adantl ( ( 𝐴 ∈ On ∧ 𝐴 = ∅ ) → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = ( 1o𝐴 ) )
9 iftrue ( ∅ ∈ 𝐴 → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = ∅ )
10 9 adantl ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = ∅ )
11 eloni ( 𝐴 ∈ On → Ord 𝐴 )
12 ordgt0ge1 ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 1o𝐴 ) )
13 11 12 syl ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 1o𝐴 ) )
14 13 biimpa ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → 1o𝐴 )
15 ssdif0 ( 1o𝐴 ↔ ( 1o𝐴 ) = ∅ )
16 14 15 sylib ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 1o𝐴 ) = ∅ )
17 10 16 eqtr4d ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = ( 1o𝐴 ) )
18 on0eqel ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) )
19 8 17 18 mpjaodan ( 𝐴 ∈ On → if ( ∅ ∈ 𝐴 , ∅ , 1o ) = ( 1o𝐴 ) )
20 1 19 eqtr4d ( 𝐴 ∈ On → ( ∅ ↑o 𝐴 ) = if ( ∅ ∈ 𝐴 , ∅ , 1o ) )