Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ On ) |
2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 ∈ On ) |
3 |
|
simp3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
4 |
|
oawordex |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ∃ 𝑐 ∈ On ( 𝐵 +o 𝑐 ) = 𝐴 ) ) |
5 |
4
|
biimpa |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → ∃ 𝑐 ∈ On ( 𝐵 +o 𝑐 ) = 𝐴 ) |
6 |
1 2 3 5
|
syl21anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) → ∃ 𝑐 ∈ On ( 𝐵 +o 𝑐 ) = 𝐴 ) |
7 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) → ( 𝐵 +o 𝑐 ) = 𝐴 ) |
8 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → 𝐴 ∈ On ) |
9 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → 𝐵 ∈ On ) |
10 |
|
oaword2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) |
12 |
11
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) |
13 |
7 12
|
eqsstrd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) → ( 𝐵 +o 𝑐 ) ⊆ ( 𝐵 +o 𝐴 ) ) |
14 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → 𝑐 ∈ On ) |
15 |
|
oaword |
⊢ ( ( 𝑐 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑐 ⊆ 𝐴 ↔ ( 𝐵 +o 𝑐 ) ⊆ ( 𝐵 +o 𝐴 ) ) ) |
16 |
14 8 9 15
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → ( 𝑐 ⊆ 𝐴 ↔ ( 𝐵 +o 𝑐 ) ⊆ ( 𝐵 +o 𝐴 ) ) ) |
17 |
16
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) → ( 𝑐 ⊆ 𝐴 ↔ ( 𝐵 +o 𝑐 ) ⊆ ( 𝐵 +o 𝐴 ) ) ) |
18 |
13 17
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) → 𝑐 ⊆ 𝐴 ) |
19 |
18
|
ex |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → ( ( 𝐵 +o 𝑐 ) = 𝐴 → 𝑐 ⊆ 𝐴 ) ) |
20 |
19
|
ancrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → ( ( 𝐵 +o 𝑐 ) = 𝐴 → ( 𝑐 ⊆ 𝐴 ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) ) ) |
21 |
20
|
reximdva |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑐 ∈ On ( 𝐵 +o 𝑐 ) = 𝐴 → ∃ 𝑐 ∈ On ( 𝑐 ⊆ 𝐴 ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) ) ) |
22 |
6 21
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) → ∃ 𝑐 ∈ On ( 𝑐 ⊆ 𝐴 ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) ) |