| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ On ) |
| 2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 ∈ On ) |
| 3 |
|
simp3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 4 |
|
oawordex |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ∃ 𝑐 ∈ On ( 𝐵 +o 𝑐 ) = 𝐴 ) ) |
| 5 |
4
|
biimpa |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → ∃ 𝑐 ∈ On ( 𝐵 +o 𝑐 ) = 𝐴 ) |
| 6 |
1 2 3 5
|
syl21anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) → ∃ 𝑐 ∈ On ( 𝐵 +o 𝑐 ) = 𝐴 ) |
| 7 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) → ( 𝐵 +o 𝑐 ) = 𝐴 ) |
| 8 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → 𝐴 ∈ On ) |
| 9 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → 𝐵 ∈ On ) |
| 10 |
|
oaword2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) |
| 11 |
8 9 10
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) |
| 13 |
7 12
|
eqsstrd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) → ( 𝐵 +o 𝑐 ) ⊆ ( 𝐵 +o 𝐴 ) ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → 𝑐 ∈ On ) |
| 15 |
|
oaword |
⊢ ( ( 𝑐 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑐 ⊆ 𝐴 ↔ ( 𝐵 +o 𝑐 ) ⊆ ( 𝐵 +o 𝐴 ) ) ) |
| 16 |
14 8 9 15
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → ( 𝑐 ⊆ 𝐴 ↔ ( 𝐵 +o 𝑐 ) ⊆ ( 𝐵 +o 𝐴 ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) → ( 𝑐 ⊆ 𝐴 ↔ ( 𝐵 +o 𝑐 ) ⊆ ( 𝐵 +o 𝐴 ) ) ) |
| 18 |
13 17
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) → 𝑐 ⊆ 𝐴 ) |
| 19 |
18
|
ex |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → ( ( 𝐵 +o 𝑐 ) = 𝐴 → 𝑐 ⊆ 𝐴 ) ) |
| 20 |
19
|
ancrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ∈ On ) → ( ( 𝐵 +o 𝑐 ) = 𝐴 → ( 𝑐 ⊆ 𝐴 ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) ) ) |
| 21 |
20
|
reximdva |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑐 ∈ On ( 𝐵 +o 𝑐 ) = 𝐴 → ∃ 𝑐 ∈ On ( 𝑐 ⊆ 𝐴 ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) ) ) |
| 22 |
6 21
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴 ) → ∃ 𝑐 ∈ On ( 𝑐 ⊆ 𝐴 ∧ ( 𝐵 +o 𝑐 ) = 𝐴 ) ) |