Metamath Proof Explorer


Theorem nnamecl

Description: Natural numbers are closed under ordinal addition, multiplication, and exponentiation. Theorem 2.20 of Schloeder p. 6. See nnacl , nnmcl , nnecl . (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion nnamecl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) ∈ ω ∧ ( 𝐴 ·o 𝐵 ) ∈ ω ∧ ( 𝐴o 𝐵 ) ∈ ω ) )

Proof

Step Hyp Ref Expression
1 nnacl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω )
2 nnmcl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) ∈ ω )
3 nnecl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴o 𝐵 ) ∈ ω )
4 1 2 3 3jca ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) ∈ ω ∧ ( 𝐴 ·o 𝐵 ) ∈ ω ∧ ( 𝐴o 𝐵 ) ∈ ω ) )