Metamath Proof Explorer


Theorem nnamecl

Description: Natural numbers are closed under ordinal addition, multiplication, and exponentiation. Theorem 2.20 of Schloeder p. 6. See nnacl , nnmcl , nnecl . (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion nnamecl
|- ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) e. _om /\ ( A .o B ) e. _om /\ ( A ^o B ) e. _om ) )

Proof

Step Hyp Ref Expression
1 nnacl
 |-  ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om )
2 nnmcl
 |-  ( ( A e. _om /\ B e. _om ) -> ( A .o B ) e. _om )
3 nnecl
 |-  ( ( A e. _om /\ B e. _om ) -> ( A ^o B ) e. _om )
4 1 2 3 3jca
 |-  ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) e. _om /\ ( A .o B ) e. _om /\ ( A ^o B ) e. _om ) )