| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 |  |-  ( ( A e. On /\ B e. On /\ B C_ A ) -> B e. On ) | 
						
							| 2 |  | simp1 |  |-  ( ( A e. On /\ B e. On /\ B C_ A ) -> A e. On ) | 
						
							| 3 |  | simp3 |  |-  ( ( A e. On /\ B e. On /\ B C_ A ) -> B C_ A ) | 
						
							| 4 |  | oawordex |  |-  ( ( B e. On /\ A e. On ) -> ( B C_ A <-> E. c e. On ( B +o c ) = A ) ) | 
						
							| 5 | 4 | biimpa |  |-  ( ( ( B e. On /\ A e. On ) /\ B C_ A ) -> E. c e. On ( B +o c ) = A ) | 
						
							| 6 | 1 2 3 5 | syl21anc |  |-  ( ( A e. On /\ B e. On /\ B C_ A ) -> E. c e. On ( B +o c ) = A ) | 
						
							| 7 |  | simpr |  |-  ( ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) /\ ( B +o c ) = A ) -> ( B +o c ) = A ) | 
						
							| 8 |  | simpl1 |  |-  ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> A e. On ) | 
						
							| 9 |  | simpl2 |  |-  ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> B e. On ) | 
						
							| 10 |  | oaword2 |  |-  ( ( A e. On /\ B e. On ) -> A C_ ( B +o A ) ) | 
						
							| 11 | 8 9 10 | syl2anc |  |-  ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> A C_ ( B +o A ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) /\ ( B +o c ) = A ) -> A C_ ( B +o A ) ) | 
						
							| 13 | 7 12 | eqsstrd |  |-  ( ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) /\ ( B +o c ) = A ) -> ( B +o c ) C_ ( B +o A ) ) | 
						
							| 14 |  | simpr |  |-  ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> c e. On ) | 
						
							| 15 |  | oaword |  |-  ( ( c e. On /\ A e. On /\ B e. On ) -> ( c C_ A <-> ( B +o c ) C_ ( B +o A ) ) ) | 
						
							| 16 | 14 8 9 15 | syl3anc |  |-  ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> ( c C_ A <-> ( B +o c ) C_ ( B +o A ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) /\ ( B +o c ) = A ) -> ( c C_ A <-> ( B +o c ) C_ ( B +o A ) ) ) | 
						
							| 18 | 13 17 | mpbird |  |-  ( ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) /\ ( B +o c ) = A ) -> c C_ A ) | 
						
							| 19 | 18 | ex |  |-  ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> ( ( B +o c ) = A -> c C_ A ) ) | 
						
							| 20 | 19 | ancrd |  |-  ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> ( ( B +o c ) = A -> ( c C_ A /\ ( B +o c ) = A ) ) ) | 
						
							| 21 | 20 | reximdva |  |-  ( ( A e. On /\ B e. On /\ B C_ A ) -> ( E. c e. On ( B +o c ) = A -> E. c e. On ( c C_ A /\ ( B +o c ) = A ) ) ) | 
						
							| 22 | 6 21 | mpd |  |-  ( ( A e. On /\ B e. On /\ B C_ A ) -> E. c e. On ( c C_ A /\ ( B +o c ) = A ) ) |