Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( A e. On /\ B e. On /\ B C_ A ) -> B e. On ) |
2 |
|
simp1 |
|- ( ( A e. On /\ B e. On /\ B C_ A ) -> A e. On ) |
3 |
|
simp3 |
|- ( ( A e. On /\ B e. On /\ B C_ A ) -> B C_ A ) |
4 |
|
oawordex |
|- ( ( B e. On /\ A e. On ) -> ( B C_ A <-> E. c e. On ( B +o c ) = A ) ) |
5 |
4
|
biimpa |
|- ( ( ( B e. On /\ A e. On ) /\ B C_ A ) -> E. c e. On ( B +o c ) = A ) |
6 |
1 2 3 5
|
syl21anc |
|- ( ( A e. On /\ B e. On /\ B C_ A ) -> E. c e. On ( B +o c ) = A ) |
7 |
|
simpr |
|- ( ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) /\ ( B +o c ) = A ) -> ( B +o c ) = A ) |
8 |
|
simpl1 |
|- ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> A e. On ) |
9 |
|
simpl2 |
|- ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> B e. On ) |
10 |
|
oaword2 |
|- ( ( A e. On /\ B e. On ) -> A C_ ( B +o A ) ) |
11 |
8 9 10
|
syl2anc |
|- ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> A C_ ( B +o A ) ) |
12 |
11
|
adantr |
|- ( ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) /\ ( B +o c ) = A ) -> A C_ ( B +o A ) ) |
13 |
7 12
|
eqsstrd |
|- ( ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) /\ ( B +o c ) = A ) -> ( B +o c ) C_ ( B +o A ) ) |
14 |
|
simpr |
|- ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> c e. On ) |
15 |
|
oaword |
|- ( ( c e. On /\ A e. On /\ B e. On ) -> ( c C_ A <-> ( B +o c ) C_ ( B +o A ) ) ) |
16 |
14 8 9 15
|
syl3anc |
|- ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> ( c C_ A <-> ( B +o c ) C_ ( B +o A ) ) ) |
17 |
16
|
adantr |
|- ( ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) /\ ( B +o c ) = A ) -> ( c C_ A <-> ( B +o c ) C_ ( B +o A ) ) ) |
18 |
13 17
|
mpbird |
|- ( ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) /\ ( B +o c ) = A ) -> c C_ A ) |
19 |
18
|
ex |
|- ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> ( ( B +o c ) = A -> c C_ A ) ) |
20 |
19
|
ancrd |
|- ( ( ( A e. On /\ B e. On /\ B C_ A ) /\ c e. On ) -> ( ( B +o c ) = A -> ( c C_ A /\ ( B +o c ) = A ) ) ) |
21 |
20
|
reximdva |
|- ( ( A e. On /\ B e. On /\ B C_ A ) -> ( E. c e. On ( B +o c ) = A -> E. c e. On ( c C_ A /\ ( B +o c ) = A ) ) ) |
22 |
6 21
|
mpd |
|- ( ( A e. On /\ B e. On /\ B C_ A ) -> E. c e. On ( c C_ A /\ ( B +o c ) = A ) ) |