Metamath Proof Explorer


Theorem limiun

Description: A limit ordinal is the union of its elements, indexed union version. Lemma 2.13 of Schloeder p. 5. See limuni . (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion limiun Lim A A = x A x

Proof

Step Hyp Ref Expression
1 limuni Lim A A = A
2 uniiun A = x A x
3 1 2 eqtrdi Lim A A = x A x