Metamath Proof Explorer


Theorem limiun

Description: A limit ordinal is the union of its elements, indexed union version. Lemma 2.13 of Schloeder p. 5. See limuni . (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion limiun ( Lim 𝐴𝐴 = 𝑥𝐴 𝑥 )

Proof

Step Hyp Ref Expression
1 limuni ( Lim 𝐴𝐴 = 𝐴 )
2 uniiun 𝐴 = 𝑥𝐴 𝑥
3 1 2 eqtrdi ( Lim 𝐴𝐴 = 𝑥𝐴 𝑥 )