Metamath Proof Explorer


Theorem limexissup

Description: An ordinal which is a limit ordinal is equal to its supremum. Lemma 2.13 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion limexissup Lim A A V A = sup A On E

Proof

Step Hyp Ref Expression
1 limuni Lim A A = A
2 1 adantr Lim A A V A = A
3 limord Lim A Ord A
4 ordsson Ord A A On
5 3 4 syl Lim A A On
6 onsupuni A On A V sup A On E = A
7 5 6 sylan Lim A A V sup A On E = A
8 2 7 eqtr4d Lim A A V A = sup A On E