Metamath Proof Explorer


Theorem limexissup

Description: An ordinal which is a limit ordinal is equal to its supremum. Lemma 2.13 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion limexissup ( ( Lim 𝐴𝐴𝑉 ) → 𝐴 = sup ( 𝐴 , On , E ) )

Proof

Step Hyp Ref Expression
1 limuni ( Lim 𝐴𝐴 = 𝐴 )
2 1 adantr ( ( Lim 𝐴𝐴𝑉 ) → 𝐴 = 𝐴 )
3 limord ( Lim 𝐴 → Ord 𝐴 )
4 ordsson ( Ord 𝐴𝐴 ⊆ On )
5 3 4 syl ( Lim 𝐴𝐴 ⊆ On )
6 onsupuni ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → sup ( 𝐴 , On , E ) = 𝐴 )
7 5 6 sylan ( ( Lim 𝐴𝐴𝑉 ) → sup ( 𝐴 , On , E ) = 𝐴 )
8 2 7 eqtr4d ( ( Lim 𝐴𝐴𝑉 ) → 𝐴 = sup ( 𝐴 , On , E ) )