Description: An ordinal which is a limit ordinal is equal to its supremum. Lemma 2.13 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limexissup | ⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐴 = sup ( 𝐴 , On , E ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | limuni | ⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) | |
| 2 | 1 | adantr | ⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐴 = ∪ 𝐴 ) | 
| 3 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 4 | ordsson | ⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) | |
| 5 | 3 4 | syl | ⊢ ( Lim 𝐴 → 𝐴 ⊆ On ) | 
| 6 | onsupuni | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → sup ( 𝐴 , On , E ) = ∪ 𝐴 ) | |
| 7 | 5 6 | sylan | ⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → sup ( 𝐴 , On , E ) = ∪ 𝐴 ) | 
| 8 | 2 7 | eqtr4d | ⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐴 = sup ( 𝐴 , On , E ) ) |