Description: A prime number which is odd is an integer greater than or equal to 3. (Contributed by AV, 20-Jul-2020) (Proof shortened by AV, 21-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddprmuzge3 | |- ( ( P e. Prime /\ P e. Odd ) -> P e. ( ZZ>= ` 3 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oddprmne2 |  |-  ( ( P e. Prime /\ P e. Odd ) <-> P e. ( Prime \ { 2 } ) ) | |
| 2 | oddprmge3 |  |-  ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 3 ) ) | |
| 3 | 1 2 | sylbi | |- ( ( P e. Prime /\ P e. Odd ) -> P e. ( ZZ>= ` 3 ) ) |