| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 2 |  | oddprmgt2 |  |-  ( P e. ( Prime \ { 2 } ) -> 2 < P ) | 
						
							| 3 |  | 3z |  |-  3 e. ZZ | 
						
							| 4 | 3 | a1i |  |-  ( ( P e. Prime /\ 2 < P ) -> 3 e. ZZ ) | 
						
							| 5 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 6 | 5 | adantr |  |-  ( ( P e. Prime /\ 2 < P ) -> P e. ZZ ) | 
						
							| 7 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 8 |  | 2z |  |-  2 e. ZZ | 
						
							| 9 |  | zltp1le |  |-  ( ( 2 e. ZZ /\ P e. ZZ ) -> ( 2 < P <-> ( 2 + 1 ) <_ P ) ) | 
						
							| 10 | 8 5 9 | sylancr |  |-  ( P e. Prime -> ( 2 < P <-> ( 2 + 1 ) <_ P ) ) | 
						
							| 11 | 10 | biimpa |  |-  ( ( P e. Prime /\ 2 < P ) -> ( 2 + 1 ) <_ P ) | 
						
							| 12 | 7 11 | eqbrtrid |  |-  ( ( P e. Prime /\ 2 < P ) -> 3 <_ P ) | 
						
							| 13 | 4 6 12 | 3jca |  |-  ( ( P e. Prime /\ 2 < P ) -> ( 3 e. ZZ /\ P e. ZZ /\ 3 <_ P ) ) | 
						
							| 14 | 1 2 13 | syl2anc |  |-  ( P e. ( Prime \ { 2 } ) -> ( 3 e. ZZ /\ P e. ZZ /\ 3 <_ P ) ) | 
						
							| 15 |  | eluz2 |  |-  ( P e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ P e. ZZ /\ 3 <_ P ) ) | 
						
							| 16 | 14 15 | sylibr |  |-  ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 3 ) ) |