| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifsn |  |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 2 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 3 |  | eluz2 |  |-  ( P e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ P e. ZZ /\ 2 <_ P ) ) | 
						
							| 4 |  | zre |  |-  ( 2 e. ZZ -> 2 e. RR ) | 
						
							| 5 |  | zre |  |-  ( P e. ZZ -> P e. RR ) | 
						
							| 6 |  | ltlen |  |-  ( ( 2 e. RR /\ P e. RR ) -> ( 2 < P <-> ( 2 <_ P /\ P =/= 2 ) ) ) | 
						
							| 7 | 4 5 6 | syl2an |  |-  ( ( 2 e. ZZ /\ P e. ZZ ) -> ( 2 < P <-> ( 2 <_ P /\ P =/= 2 ) ) ) | 
						
							| 8 | 7 | biimprd |  |-  ( ( 2 e. ZZ /\ P e. ZZ ) -> ( ( 2 <_ P /\ P =/= 2 ) -> 2 < P ) ) | 
						
							| 9 | 8 | exp4b |  |-  ( 2 e. ZZ -> ( P e. ZZ -> ( 2 <_ P -> ( P =/= 2 -> 2 < P ) ) ) ) | 
						
							| 10 | 9 | 3imp |  |-  ( ( 2 e. ZZ /\ P e. ZZ /\ 2 <_ P ) -> ( P =/= 2 -> 2 < P ) ) | 
						
							| 11 | 3 10 | sylbi |  |-  ( P e. ( ZZ>= ` 2 ) -> ( P =/= 2 -> 2 < P ) ) | 
						
							| 12 | 2 11 | syl |  |-  ( P e. Prime -> ( P =/= 2 -> 2 < P ) ) | 
						
							| 13 | 12 | imp |  |-  ( ( P e. Prime /\ P =/= 2 ) -> 2 < P ) | 
						
							| 14 | 1 13 | sylbi |  |-  ( P e. ( Prime \ { 2 } ) -> 2 < P ) |