| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifsn | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 2 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 3 |  | eluz2 | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  𝑃  ∈  ℤ  ∧  2  ≤  𝑃 ) ) | 
						
							| 4 |  | zre | ⊢ ( 2  ∈  ℤ  →  2  ∈  ℝ ) | 
						
							| 5 |  | zre | ⊢ ( 𝑃  ∈  ℤ  →  𝑃  ∈  ℝ ) | 
						
							| 6 |  | ltlen | ⊢ ( ( 2  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 2  <  𝑃  ↔  ( 2  ≤  𝑃  ∧  𝑃  ≠  2 ) ) ) | 
						
							| 7 | 4 5 6 | syl2an | ⊢ ( ( 2  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  ( 2  <  𝑃  ↔  ( 2  ≤  𝑃  ∧  𝑃  ≠  2 ) ) ) | 
						
							| 8 | 7 | biimprd | ⊢ ( ( 2  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  ( ( 2  ≤  𝑃  ∧  𝑃  ≠  2 )  →  2  <  𝑃 ) ) | 
						
							| 9 | 8 | exp4b | ⊢ ( 2  ∈  ℤ  →  ( 𝑃  ∈  ℤ  →  ( 2  ≤  𝑃  →  ( 𝑃  ≠  2  →  2  <  𝑃 ) ) ) ) | 
						
							| 10 | 9 | 3imp | ⊢ ( ( 2  ∈  ℤ  ∧  𝑃  ∈  ℤ  ∧  2  ≤  𝑃 )  →  ( 𝑃  ≠  2  →  2  <  𝑃 ) ) | 
						
							| 11 | 3 10 | sylbi | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑃  ≠  2  →  2  <  𝑃 ) ) | 
						
							| 12 | 2 11 | syl | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ≠  2  →  2  <  𝑃 ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  →  2  <  𝑃 ) | 
						
							| 14 | 1 13 | sylbi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  2  <  𝑃 ) |