| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 2 |  | oddprmgt2 | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  2  <  𝑃 ) | 
						
							| 3 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝑃  ∈  ℙ  ∧  2  <  𝑃 )  →  3  ∈  ℤ ) | 
						
							| 5 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  2  <  𝑃 )  →  𝑃  ∈  ℤ ) | 
						
							| 7 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 8 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 9 |  | zltp1le | ⊢ ( ( 2  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  ( 2  <  𝑃  ↔  ( 2  +  1 )  ≤  𝑃 ) ) | 
						
							| 10 | 8 5 9 | sylancr | ⊢ ( 𝑃  ∈  ℙ  →  ( 2  <  𝑃  ↔  ( 2  +  1 )  ≤  𝑃 ) ) | 
						
							| 11 | 10 | biimpa | ⊢ ( ( 𝑃  ∈  ℙ  ∧  2  <  𝑃 )  →  ( 2  +  1 )  ≤  𝑃 ) | 
						
							| 12 | 7 11 | eqbrtrid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  2  <  𝑃 )  →  3  ≤  𝑃 ) | 
						
							| 13 | 4 6 12 | 3jca | ⊢ ( ( 𝑃  ∈  ℙ  ∧  2  <  𝑃 )  →  ( 3  ∈  ℤ  ∧  𝑃  ∈  ℤ  ∧  3  ≤  𝑃 ) ) | 
						
							| 14 | 1 2 13 | syl2anc | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 3  ∈  ℤ  ∧  𝑃  ∈  ℤ  ∧  3  ≤  𝑃 ) ) | 
						
							| 15 |  | eluz2 | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 3 )  ↔  ( 3  ∈  ℤ  ∧  𝑃  ∈  ℤ  ∧  3  ≤  𝑃 ) ) | 
						
							| 16 | 14 15 | sylibr | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ( ℤ≥ ‘ 3 ) ) |