| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2b2 |
⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ) |
| 2 |
|
4z |
⊢ 4 ∈ ℤ |
| 3 |
2
|
a1i |
⊢ ( ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ∧ 𝑋 ∉ ℙ ) → 4 ∈ ℤ ) |
| 4 |
|
nnz |
⊢ ( 𝑋 ∈ ℕ → 𝑋 ∈ ℤ ) |
| 5 |
4
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ∧ 𝑋 ∉ ℙ ) → 𝑋 ∈ ℤ ) |
| 6 |
|
1z |
⊢ 1 ∈ ℤ |
| 7 |
|
zltp1le |
⊢ ( ( 1 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 1 < 𝑋 ↔ ( 1 + 1 ) ≤ 𝑋 ) ) |
| 8 |
6 4 7
|
sylancr |
⊢ ( 𝑋 ∈ ℕ → ( 1 < 𝑋 ↔ ( 1 + 1 ) ≤ 𝑋 ) ) |
| 9 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 10 |
9
|
breq1i |
⊢ ( ( 1 + 1 ) ≤ 𝑋 ↔ 2 ≤ 𝑋 ) |
| 11 |
8 10
|
bitrdi |
⊢ ( 𝑋 ∈ ℕ → ( 1 < 𝑋 ↔ 2 ≤ 𝑋 ) ) |
| 12 |
|
2re |
⊢ 2 ∈ ℝ |
| 13 |
|
nnre |
⊢ ( 𝑋 ∈ ℕ → 𝑋 ∈ ℝ ) |
| 14 |
|
leloe |
⊢ ( ( 2 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 2 ≤ 𝑋 ↔ ( 2 < 𝑋 ∨ 2 = 𝑋 ) ) ) |
| 15 |
12 13 14
|
sylancr |
⊢ ( 𝑋 ∈ ℕ → ( 2 ≤ 𝑋 ↔ ( 2 < 𝑋 ∨ 2 = 𝑋 ) ) ) |
| 16 |
|
2z |
⊢ 2 ∈ ℤ |
| 17 |
|
zltp1le |
⊢ ( ( 2 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 2 < 𝑋 ↔ ( 2 + 1 ) ≤ 𝑋 ) ) |
| 18 |
16 4 17
|
sylancr |
⊢ ( 𝑋 ∈ ℕ → ( 2 < 𝑋 ↔ ( 2 + 1 ) ≤ 𝑋 ) ) |
| 19 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 20 |
19
|
breq1i |
⊢ ( ( 2 + 1 ) ≤ 𝑋 ↔ 3 ≤ 𝑋 ) |
| 21 |
18 20
|
bitrdi |
⊢ ( 𝑋 ∈ ℕ → ( 2 < 𝑋 ↔ 3 ≤ 𝑋 ) ) |
| 22 |
|
3re |
⊢ 3 ∈ ℝ |
| 23 |
|
leloe |
⊢ ( ( 3 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 3 ≤ 𝑋 ↔ ( 3 < 𝑋 ∨ 3 = 𝑋 ) ) ) |
| 24 |
22 13 23
|
sylancr |
⊢ ( 𝑋 ∈ ℕ → ( 3 ≤ 𝑋 ↔ ( 3 < 𝑋 ∨ 3 = 𝑋 ) ) ) |
| 25 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
| 26 |
|
3z |
⊢ 3 ∈ ℤ |
| 27 |
|
zltp1le |
⊢ ( ( 3 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 3 < 𝑋 ↔ ( 3 + 1 ) ≤ 𝑋 ) ) |
| 28 |
26 4 27
|
sylancr |
⊢ ( 𝑋 ∈ ℕ → ( 3 < 𝑋 ↔ ( 3 + 1 ) ≤ 𝑋 ) ) |
| 29 |
28
|
biimpa |
⊢ ( ( 𝑋 ∈ ℕ ∧ 3 < 𝑋 ) → ( 3 + 1 ) ≤ 𝑋 ) |
| 30 |
25 29
|
eqbrtrid |
⊢ ( ( 𝑋 ∈ ℕ ∧ 3 < 𝑋 ) → 4 ≤ 𝑋 ) |
| 31 |
30
|
a1d |
⊢ ( ( 𝑋 ∈ ℕ ∧ 3 < 𝑋 ) → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 32 |
31
|
ex |
⊢ ( 𝑋 ∈ ℕ → ( 3 < 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 33 |
|
neleq1 |
⊢ ( 𝑋 = 3 → ( 𝑋 ∉ ℙ ↔ 3 ∉ ℙ ) ) |
| 34 |
33
|
eqcoms |
⊢ ( 3 = 𝑋 → ( 𝑋 ∉ ℙ ↔ 3 ∉ ℙ ) ) |
| 35 |
|
3prm |
⊢ 3 ∈ ℙ |
| 36 |
|
pm2.24nel |
⊢ ( 3 ∈ ℙ → ( 3 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 37 |
35 36
|
mp1i |
⊢ ( 3 = 𝑋 → ( 3 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 38 |
34 37
|
sylbid |
⊢ ( 3 = 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 39 |
38
|
a1i |
⊢ ( 𝑋 ∈ ℕ → ( 3 = 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 40 |
32 39
|
jaod |
⊢ ( 𝑋 ∈ ℕ → ( ( 3 < 𝑋 ∨ 3 = 𝑋 ) → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 41 |
24 40
|
sylbid |
⊢ ( 𝑋 ∈ ℕ → ( 3 ≤ 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 42 |
21 41
|
sylbid |
⊢ ( 𝑋 ∈ ℕ → ( 2 < 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 43 |
|
neleq1 |
⊢ ( 𝑋 = 2 → ( 𝑋 ∉ ℙ ↔ 2 ∉ ℙ ) ) |
| 44 |
43
|
eqcoms |
⊢ ( 2 = 𝑋 → ( 𝑋 ∉ ℙ ↔ 2 ∉ ℙ ) ) |
| 45 |
|
2prm |
⊢ 2 ∈ ℙ |
| 46 |
|
pm2.24nel |
⊢ ( 2 ∈ ℙ → ( 2 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 47 |
45 46
|
mp1i |
⊢ ( 2 = 𝑋 → ( 2 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 48 |
44 47
|
sylbid |
⊢ ( 2 = 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 49 |
48
|
a1i |
⊢ ( 𝑋 ∈ ℕ → ( 2 = 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 50 |
42 49
|
jaod |
⊢ ( 𝑋 ∈ ℕ → ( ( 2 < 𝑋 ∨ 2 = 𝑋 ) → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 51 |
15 50
|
sylbid |
⊢ ( 𝑋 ∈ ℕ → ( 2 ≤ 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 52 |
11 51
|
sylbid |
⊢ ( 𝑋 ∈ ℕ → ( 1 < 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 53 |
52
|
imp |
⊢ ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 54 |
53
|
imp |
⊢ ( ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ∧ 𝑋 ∉ ℙ ) → 4 ≤ 𝑋 ) |
| 55 |
3 5 54
|
3jca |
⊢ ( ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ∧ 𝑋 ∉ ℙ ) → ( 4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋 ) ) |
| 56 |
55
|
ex |
⊢ ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) → ( 𝑋 ∉ ℙ → ( 4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋 ) ) ) |
| 57 |
|
eluz2 |
⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 4 ) ↔ ( 4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋 ) ) |
| 58 |
56 57
|
imbitrrdi |
⊢ ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) → ( 𝑋 ∉ ℙ → 𝑋 ∈ ( ℤ≥ ‘ 4 ) ) ) |
| 59 |
1 58
|
sylbi |
⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑋 ∉ ℙ → 𝑋 ∈ ( ℤ≥ ‘ 4 ) ) ) |
| 60 |
59
|
imp |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∉ ℙ ) → 𝑋 ∈ ( ℤ≥ ‘ 4 ) ) |