| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evenz |  |-  ( M e. Even -> M e. ZZ ) | 
						
							| 2 |  | evenz |  |-  ( N e. Even -> N e. ZZ ) | 
						
							| 3 |  | zltp1le |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M + 1 ) <_ N ) ) | 
						
							| 4 | 1 2 3 | syl2anr |  |-  ( ( N e. Even /\ M e. Even ) -> ( M < N <-> ( M + 1 ) <_ N ) ) | 
						
							| 5 | 1 | zred |  |-  ( M e. Even -> M e. RR ) | 
						
							| 6 |  | peano2re |  |-  ( M e. RR -> ( M + 1 ) e. RR ) | 
						
							| 7 | 5 6 | syl |  |-  ( M e. Even -> ( M + 1 ) e. RR ) | 
						
							| 8 | 2 | zred |  |-  ( N e. Even -> N e. RR ) | 
						
							| 9 |  | leloe |  |-  ( ( ( M + 1 ) e. RR /\ N e. RR ) -> ( ( M + 1 ) <_ N <-> ( ( M + 1 ) < N \/ ( M + 1 ) = N ) ) ) | 
						
							| 10 | 7 8 9 | syl2anr |  |-  ( ( N e. Even /\ M e. Even ) -> ( ( M + 1 ) <_ N <-> ( ( M + 1 ) < N \/ ( M + 1 ) = N ) ) ) | 
						
							| 11 | 1 | peano2zd |  |-  ( M e. Even -> ( M + 1 ) e. ZZ ) | 
						
							| 12 |  | zltp1le |  |-  ( ( ( M + 1 ) e. ZZ /\ N e. ZZ ) -> ( ( M + 1 ) < N <-> ( ( M + 1 ) + 1 ) <_ N ) ) | 
						
							| 13 | 11 2 12 | syl2anr |  |-  ( ( N e. Even /\ M e. Even ) -> ( ( M + 1 ) < N <-> ( ( M + 1 ) + 1 ) <_ N ) ) | 
						
							| 14 | 1 | zcnd |  |-  ( M e. Even -> M e. CC ) | 
						
							| 15 | 14 | adantl |  |-  ( ( N e. Even /\ M e. Even ) -> M e. CC ) | 
						
							| 16 |  | add1p1 |  |-  ( M e. CC -> ( ( M + 1 ) + 1 ) = ( M + 2 ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( N e. Even /\ M e. Even ) -> ( ( M + 1 ) + 1 ) = ( M + 2 ) ) | 
						
							| 18 | 17 | breq1d |  |-  ( ( N e. Even /\ M e. Even ) -> ( ( ( M + 1 ) + 1 ) <_ N <-> ( M + 2 ) <_ N ) ) | 
						
							| 19 | 18 | biimpd |  |-  ( ( N e. Even /\ M e. Even ) -> ( ( ( M + 1 ) + 1 ) <_ N -> ( M + 2 ) <_ N ) ) | 
						
							| 20 | 13 19 | sylbid |  |-  ( ( N e. Even /\ M e. Even ) -> ( ( M + 1 ) < N -> ( M + 2 ) <_ N ) ) | 
						
							| 21 |  | evenp1odd |  |-  ( M e. Even -> ( M + 1 ) e. Odd ) | 
						
							| 22 |  | zneoALTV |  |-  ( ( N e. Even /\ ( M + 1 ) e. Odd ) -> N =/= ( M + 1 ) ) | 
						
							| 23 |  | eqneqall |  |-  ( N = ( M + 1 ) -> ( N =/= ( M + 1 ) -> ( M + 2 ) <_ N ) ) | 
						
							| 24 | 23 | eqcoms |  |-  ( ( M + 1 ) = N -> ( N =/= ( M + 1 ) -> ( M + 2 ) <_ N ) ) | 
						
							| 25 | 22 24 | syl5com |  |-  ( ( N e. Even /\ ( M + 1 ) e. Odd ) -> ( ( M + 1 ) = N -> ( M + 2 ) <_ N ) ) | 
						
							| 26 | 21 25 | sylan2 |  |-  ( ( N e. Even /\ M e. Even ) -> ( ( M + 1 ) = N -> ( M + 2 ) <_ N ) ) | 
						
							| 27 | 20 26 | jaod |  |-  ( ( N e. Even /\ M e. Even ) -> ( ( ( M + 1 ) < N \/ ( M + 1 ) = N ) -> ( M + 2 ) <_ N ) ) | 
						
							| 28 | 10 27 | sylbid |  |-  ( ( N e. Even /\ M e. Even ) -> ( ( M + 1 ) <_ N -> ( M + 2 ) <_ N ) ) | 
						
							| 29 | 4 28 | sylbid |  |-  ( ( N e. Even /\ M e. Even ) -> ( M < N -> ( M + 2 ) <_ N ) ) | 
						
							| 30 | 29 | 3impia |  |-  ( ( N e. Even /\ M e. Even /\ M < N ) -> ( M + 2 ) <_ N ) |