| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
|- ( N = ( P + Q ) -> ( N e. Odd <-> ( P + Q ) e. Odd ) ) |
| 2 |
|
evennodd |
|- ( ( P + Q ) e. Even -> -. ( P + Q ) e. Odd ) |
| 3 |
2
|
pm2.21d |
|- ( ( P + Q ) e. Even -> ( ( P + Q ) e. Odd -> ( P = 2 \/ Q = 2 ) ) ) |
| 4 |
|
df-ne |
|- ( P =/= 2 <-> -. P = 2 ) |
| 5 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
| 6 |
|
oddprmALTV |
|- ( P e. ( Prime \ { 2 } ) -> P e. Odd ) |
| 7 |
5 6
|
sylbir |
|- ( ( P e. Prime /\ P =/= 2 ) -> P e. Odd ) |
| 8 |
7
|
ex |
|- ( P e. Prime -> ( P =/= 2 -> P e. Odd ) ) |
| 9 |
4 8
|
biimtrrid |
|- ( P e. Prime -> ( -. P = 2 -> P e. Odd ) ) |
| 10 |
|
df-ne |
|- ( Q =/= 2 <-> -. Q = 2 ) |
| 11 |
|
eldifsn |
|- ( Q e. ( Prime \ { 2 } ) <-> ( Q e. Prime /\ Q =/= 2 ) ) |
| 12 |
|
oddprmALTV |
|- ( Q e. ( Prime \ { 2 } ) -> Q e. Odd ) |
| 13 |
11 12
|
sylbir |
|- ( ( Q e. Prime /\ Q =/= 2 ) -> Q e. Odd ) |
| 14 |
13
|
ex |
|- ( Q e. Prime -> ( Q =/= 2 -> Q e. Odd ) ) |
| 15 |
10 14
|
biimtrrid |
|- ( Q e. Prime -> ( -. Q = 2 -> Q e. Odd ) ) |
| 16 |
9 15
|
im2anan9 |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( ( -. P = 2 /\ -. Q = 2 ) -> ( P e. Odd /\ Q e. Odd ) ) ) |
| 17 |
16
|
imp |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( -. P = 2 /\ -. Q = 2 ) ) -> ( P e. Odd /\ Q e. Odd ) ) |
| 18 |
|
opoeALTV |
|- ( ( P e. Odd /\ Q e. Odd ) -> ( P + Q ) e. Even ) |
| 19 |
17 18
|
syl |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( -. P = 2 /\ -. Q = 2 ) ) -> ( P + Q ) e. Even ) |
| 20 |
3 19
|
syl11 |
|- ( ( P + Q ) e. Odd -> ( ( ( P e. Prime /\ Q e. Prime ) /\ ( -. P = 2 /\ -. Q = 2 ) ) -> ( P = 2 \/ Q = 2 ) ) ) |
| 21 |
20
|
expd |
|- ( ( P + Q ) e. Odd -> ( ( P e. Prime /\ Q e. Prime ) -> ( ( -. P = 2 /\ -. Q = 2 ) -> ( P = 2 \/ Q = 2 ) ) ) ) |
| 22 |
1 21
|
biimtrdi |
|- ( N = ( P + Q ) -> ( N e. Odd -> ( ( P e. Prime /\ Q e. Prime ) -> ( ( -. P = 2 /\ -. Q = 2 ) -> ( P = 2 \/ Q = 2 ) ) ) ) ) |
| 23 |
22
|
3imp231 |
|- ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( ( -. P = 2 /\ -. Q = 2 ) -> ( P = 2 \/ Q = 2 ) ) ) |
| 24 |
23
|
com12 |
|- ( ( -. P = 2 /\ -. Q = 2 ) -> ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) ) |
| 25 |
24
|
ex |
|- ( -. P = 2 -> ( -. Q = 2 -> ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) ) ) |
| 26 |
|
orc |
|- ( P = 2 -> ( P = 2 \/ Q = 2 ) ) |
| 27 |
26
|
a1d |
|- ( P = 2 -> ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) ) |
| 28 |
|
olc |
|- ( Q = 2 -> ( P = 2 \/ Q = 2 ) ) |
| 29 |
28
|
a1d |
|- ( Q = 2 -> ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) ) |
| 30 |
25 27 29
|
pm2.61ii |
|- ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) |