| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 |  |-  ( N = ( P + Q ) -> ( N e. Odd <-> ( P + Q ) e. Odd ) ) | 
						
							| 2 |  | evennodd |  |-  ( ( P + Q ) e. Even -> -. ( P + Q ) e. Odd ) | 
						
							| 3 | 2 | pm2.21d |  |-  ( ( P + Q ) e. Even -> ( ( P + Q ) e. Odd -> ( P = 2 \/ Q = 2 ) ) ) | 
						
							| 4 |  | df-ne |  |-  ( P =/= 2 <-> -. P = 2 ) | 
						
							| 5 |  | eldifsn |  |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 6 |  | oddprmALTV |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Odd ) | 
						
							| 7 | 5 6 | sylbir |  |-  ( ( P e. Prime /\ P =/= 2 ) -> P e. Odd ) | 
						
							| 8 | 7 | ex |  |-  ( P e. Prime -> ( P =/= 2 -> P e. Odd ) ) | 
						
							| 9 | 4 8 | biimtrrid |  |-  ( P e. Prime -> ( -. P = 2 -> P e. Odd ) ) | 
						
							| 10 |  | df-ne |  |-  ( Q =/= 2 <-> -. Q = 2 ) | 
						
							| 11 |  | eldifsn |  |-  ( Q e. ( Prime \ { 2 } ) <-> ( Q e. Prime /\ Q =/= 2 ) ) | 
						
							| 12 |  | oddprmALTV |  |-  ( Q e. ( Prime \ { 2 } ) -> Q e. Odd ) | 
						
							| 13 | 11 12 | sylbir |  |-  ( ( Q e. Prime /\ Q =/= 2 ) -> Q e. Odd ) | 
						
							| 14 | 13 | ex |  |-  ( Q e. Prime -> ( Q =/= 2 -> Q e. Odd ) ) | 
						
							| 15 | 10 14 | biimtrrid |  |-  ( Q e. Prime -> ( -. Q = 2 -> Q e. Odd ) ) | 
						
							| 16 | 9 15 | im2anan9 |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( ( -. P = 2 /\ -. Q = 2 ) -> ( P e. Odd /\ Q e. Odd ) ) ) | 
						
							| 17 | 16 | imp |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ ( -. P = 2 /\ -. Q = 2 ) ) -> ( P e. Odd /\ Q e. Odd ) ) | 
						
							| 18 |  | opoeALTV |  |-  ( ( P e. Odd /\ Q e. Odd ) -> ( P + Q ) e. Even ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ ( -. P = 2 /\ -. Q = 2 ) ) -> ( P + Q ) e. Even ) | 
						
							| 20 | 3 19 | syl11 |  |-  ( ( P + Q ) e. Odd -> ( ( ( P e. Prime /\ Q e. Prime ) /\ ( -. P = 2 /\ -. Q = 2 ) ) -> ( P = 2 \/ Q = 2 ) ) ) | 
						
							| 21 | 20 | expd |  |-  ( ( P + Q ) e. Odd -> ( ( P e. Prime /\ Q e. Prime ) -> ( ( -. P = 2 /\ -. Q = 2 ) -> ( P = 2 \/ Q = 2 ) ) ) ) | 
						
							| 22 | 1 21 | biimtrdi |  |-  ( N = ( P + Q ) -> ( N e. Odd -> ( ( P e. Prime /\ Q e. Prime ) -> ( ( -. P = 2 /\ -. Q = 2 ) -> ( P = 2 \/ Q = 2 ) ) ) ) ) | 
						
							| 23 | 22 | 3imp231 |  |-  ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( ( -. P = 2 /\ -. Q = 2 ) -> ( P = 2 \/ Q = 2 ) ) ) | 
						
							| 24 | 23 | com12 |  |-  ( ( -. P = 2 /\ -. Q = 2 ) -> ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) ) | 
						
							| 25 | 24 | ex |  |-  ( -. P = 2 -> ( -. Q = 2 -> ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) ) ) | 
						
							| 26 |  | orc |  |-  ( P = 2 -> ( P = 2 \/ Q = 2 ) ) | 
						
							| 27 | 26 | a1d |  |-  ( P = 2 -> ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) ) | 
						
							| 28 |  | olc |  |-  ( Q = 2 -> ( P = 2 \/ Q = 2 ) ) | 
						
							| 29 | 28 | a1d |  |-  ( Q = 2 -> ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) ) | 
						
							| 30 | 25 27 29 | pm2.61ii |  |-  ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) |