| Step | Hyp | Ref | Expression | 
						
							| 1 |  | olc |  |-  ( R = 2 -> ( ( P = 2 \/ Q = 2 ) \/ R = 2 ) ) | 
						
							| 2 | 1 | a1d |  |-  ( R = 2 -> ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N = ( ( P + Q ) + R ) ) -> ( ( P = 2 \/ Q = 2 ) \/ R = 2 ) ) ) | 
						
							| 3 |  | df-ne |  |-  ( R =/= 2 <-> -. R = 2 ) | 
						
							| 4 |  | eldifsn |  |-  ( R e. ( Prime \ { 2 } ) <-> ( R e. Prime /\ R =/= 2 ) ) | 
						
							| 5 |  | oddprmALTV |  |-  ( R e. ( Prime \ { 2 } ) -> R e. Odd ) | 
						
							| 6 |  | emoo |  |-  ( ( N e. Even /\ R e. Odd ) -> ( N - R ) e. Odd ) | 
						
							| 7 | 6 | expcom |  |-  ( R e. Odd -> ( N e. Even -> ( N - R ) e. Odd ) ) | 
						
							| 8 | 5 7 | syl |  |-  ( R e. ( Prime \ { 2 } ) -> ( N e. Even -> ( N - R ) e. Odd ) ) | 
						
							| 9 | 4 8 | sylbir |  |-  ( ( R e. Prime /\ R =/= 2 ) -> ( N e. Even -> ( N - R ) e. Odd ) ) | 
						
							| 10 | 9 | ex |  |-  ( R e. Prime -> ( R =/= 2 -> ( N e. Even -> ( N - R ) e. Odd ) ) ) | 
						
							| 11 | 3 10 | biimtrrid |  |-  ( R e. Prime -> ( -. R = 2 -> ( N e. Even -> ( N - R ) e. Odd ) ) ) | 
						
							| 12 | 11 | com23 |  |-  ( R e. Prime -> ( N e. Even -> ( -. R = 2 -> ( N - R ) e. Odd ) ) ) | 
						
							| 13 | 12 | 3ad2ant3 |  |-  ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) -> ( N e. Even -> ( -. R = 2 -> ( N - R ) e. Odd ) ) ) | 
						
							| 14 | 13 | impcom |  |-  ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) ) -> ( -. R = 2 -> ( N - R ) e. Odd ) ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N = ( ( P + Q ) + R ) ) -> ( -. R = 2 -> ( N - R ) e. Odd ) ) | 
						
							| 16 | 15 | impcom |  |-  ( ( -. R = 2 /\ ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N = ( ( P + Q ) + R ) ) ) -> ( N - R ) e. Odd ) | 
						
							| 17 |  | 3simpa |  |-  ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) -> ( P e. Prime /\ Q e. Prime ) ) | 
						
							| 18 | 17 | 3ad2ant2 |  |-  ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N = ( ( P + Q ) + R ) ) -> ( P e. Prime /\ Q e. Prime ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( -. R = 2 /\ ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N = ( ( P + Q ) + R ) ) ) -> ( P e. Prime /\ Q e. Prime ) ) | 
						
							| 20 |  | eqcom |  |-  ( N = ( ( P + Q ) + R ) <-> ( ( P + Q ) + R ) = N ) | 
						
							| 21 |  | evenz |  |-  ( N e. Even -> N e. ZZ ) | 
						
							| 22 | 21 | zcnd |  |-  ( N e. Even -> N e. CC ) | 
						
							| 23 | 22 | adantr |  |-  ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) ) -> N e. CC ) | 
						
							| 24 |  | prmz |  |-  ( R e. Prime -> R e. ZZ ) | 
						
							| 25 | 24 | zcnd |  |-  ( R e. Prime -> R e. CC ) | 
						
							| 26 | 25 | 3ad2ant3 |  |-  ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) -> R e. CC ) | 
						
							| 27 | 26 | adantl |  |-  ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) ) -> R e. CC ) | 
						
							| 28 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 29 |  | prmz |  |-  ( Q e. Prime -> Q e. ZZ ) | 
						
							| 30 |  | zaddcl |  |-  ( ( P e. ZZ /\ Q e. ZZ ) -> ( P + Q ) e. ZZ ) | 
						
							| 31 | 28 29 30 | syl2an |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( P + Q ) e. ZZ ) | 
						
							| 32 | 31 | zcnd |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( P + Q ) e. CC ) | 
						
							| 33 | 32 | 3adant3 |  |-  ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) -> ( P + Q ) e. CC ) | 
						
							| 34 | 33 | adantl |  |-  ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) ) -> ( P + Q ) e. CC ) | 
						
							| 35 | 23 27 34 | subadd2d |  |-  ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) ) -> ( ( N - R ) = ( P + Q ) <-> ( ( P + Q ) + R ) = N ) ) | 
						
							| 36 | 35 | biimprd |  |-  ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) ) -> ( ( ( P + Q ) + R ) = N -> ( N - R ) = ( P + Q ) ) ) | 
						
							| 37 | 20 36 | biimtrid |  |-  ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) ) -> ( N = ( ( P + Q ) + R ) -> ( N - R ) = ( P + Q ) ) ) | 
						
							| 38 | 37 | 3impia |  |-  ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N = ( ( P + Q ) + R ) ) -> ( N - R ) = ( P + Q ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( -. R = 2 /\ ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N = ( ( P + Q ) + R ) ) ) -> ( N - R ) = ( P + Q ) ) | 
						
							| 40 |  | odd2prm2 |  |-  ( ( ( N - R ) e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ ( N - R ) = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) | 
						
							| 41 | 16 19 39 40 | syl3anc |  |-  ( ( -. R = 2 /\ ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N = ( ( P + Q ) + R ) ) ) -> ( P = 2 \/ Q = 2 ) ) | 
						
							| 42 | 41 | orcd |  |-  ( ( -. R = 2 /\ ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N = ( ( P + Q ) + R ) ) ) -> ( ( P = 2 \/ Q = 2 ) \/ R = 2 ) ) | 
						
							| 43 | 42 | ex |  |-  ( -. R = 2 -> ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N = ( ( P + Q ) + R ) ) -> ( ( P = 2 \/ Q = 2 ) \/ R = 2 ) ) ) | 
						
							| 44 | 2 43 | pm2.61i |  |-  ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N = ( ( P + Q ) + R ) ) -> ( ( P = 2 \/ Q = 2 ) \/ R = 2 ) ) | 
						
							| 45 |  | df-3or |  |-  ( ( P = 2 \/ Q = 2 \/ R = 2 ) <-> ( ( P = 2 \/ Q = 2 ) \/ R = 2 ) ) | 
						
							| 46 | 44 45 | sylibr |  |-  ( ( N e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N = ( ( P + Q ) + R ) ) -> ( P = 2 \/ Q = 2 \/ R = 2 ) ) |