| Step | Hyp | Ref | Expression | 
						
							| 1 |  | olc | ⊢ ( 𝑅  =  2  →  ( ( 𝑃  =  2  ∨  𝑄  =  2 )  ∨  𝑅  =  2 ) ) | 
						
							| 2 | 1 | a1d | ⊢ ( 𝑅  =  2  →  ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( ( 𝑃  =  2  ∨  𝑄  =  2 )  ∨  𝑅  =  2 ) ) ) | 
						
							| 3 |  | df-ne | ⊢ ( 𝑅  ≠  2  ↔  ¬  𝑅  =  2 ) | 
						
							| 4 |  | eldifsn | ⊢ ( 𝑅  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑅  ∈  ℙ  ∧  𝑅  ≠  2 ) ) | 
						
							| 5 |  | oddprmALTV | ⊢ ( 𝑅  ∈  ( ℙ  ∖  { 2 } )  →  𝑅  ∈   Odd  ) | 
						
							| 6 |  | emoo | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑅  ∈   Odd  )  →  ( 𝑁  −  𝑅 )  ∈   Odd  ) | 
						
							| 7 | 6 | expcom | ⊢ ( 𝑅  ∈   Odd   →  ( 𝑁  ∈   Even   →  ( 𝑁  −  𝑅 )  ∈   Odd  ) ) | 
						
							| 8 | 5 7 | syl | ⊢ ( 𝑅  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑁  ∈   Even   →  ( 𝑁  −  𝑅 )  ∈   Odd  ) ) | 
						
							| 9 | 4 8 | sylbir | ⊢ ( ( 𝑅  ∈  ℙ  ∧  𝑅  ≠  2 )  →  ( 𝑁  ∈   Even   →  ( 𝑁  −  𝑅 )  ∈   Odd  ) ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝑅  ∈  ℙ  →  ( 𝑅  ≠  2  →  ( 𝑁  ∈   Even   →  ( 𝑁  −  𝑅 )  ∈   Odd  ) ) ) | 
						
							| 11 | 3 10 | biimtrrid | ⊢ ( 𝑅  ∈  ℙ  →  ( ¬  𝑅  =  2  →  ( 𝑁  ∈   Even   →  ( 𝑁  −  𝑅 )  ∈   Odd  ) ) ) | 
						
							| 12 | 11 | com23 | ⊢ ( 𝑅  ∈  ℙ  →  ( 𝑁  ∈   Even   →  ( ¬  𝑅  =  2  →  ( 𝑁  −  𝑅 )  ∈   Odd  ) ) ) | 
						
							| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑁  ∈   Even   →  ( ¬  𝑅  =  2  →  ( 𝑁  −  𝑅 )  ∈   Odd  ) ) ) | 
						
							| 14 | 13 | impcom | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ ) )  →  ( ¬  𝑅  =  2  →  ( 𝑁  −  𝑅 )  ∈   Odd  ) ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( ¬  𝑅  =  2  →  ( 𝑁  −  𝑅 )  ∈   Odd  ) ) | 
						
							| 16 | 15 | impcom | ⊢ ( ( ¬  𝑅  =  2  ∧  ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) ) )  →  ( 𝑁  −  𝑅 )  ∈   Odd  ) | 
						
							| 17 |  | 3simpa | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ ) ) | 
						
							| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ¬  𝑅  =  2  ∧  ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) ) )  →  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ ) ) | 
						
							| 20 |  | eqcom | ⊢ ( 𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  ↔  ( ( 𝑃  +  𝑄 )  +  𝑅 )  =  𝑁 ) | 
						
							| 21 |  | evenz | ⊢ ( 𝑁  ∈   Even   →  𝑁  ∈  ℤ ) | 
						
							| 22 | 21 | zcnd | ⊢ ( 𝑁  ∈   Even   →  𝑁  ∈  ℂ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ ) )  →  𝑁  ∈  ℂ ) | 
						
							| 24 |  | prmz | ⊢ ( 𝑅  ∈  ℙ  →  𝑅  ∈  ℤ ) | 
						
							| 25 | 24 | zcnd | ⊢ ( 𝑅  ∈  ℙ  →  𝑅  ∈  ℂ ) | 
						
							| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  𝑅  ∈  ℂ ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ ) )  →  𝑅  ∈  ℂ ) | 
						
							| 28 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 29 |  | prmz | ⊢ ( 𝑄  ∈  ℙ  →  𝑄  ∈  ℤ ) | 
						
							| 30 |  | zaddcl | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑄  ∈  ℤ )  →  ( 𝑃  +  𝑄 )  ∈  ℤ ) | 
						
							| 31 | 28 29 30 | syl2an | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( 𝑃  +  𝑄 )  ∈  ℤ ) | 
						
							| 32 | 31 | zcnd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( 𝑃  +  𝑄 )  ∈  ℂ ) | 
						
							| 33 | 32 | 3adant3 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑃  +  𝑄 )  ∈  ℂ ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ ) )  →  ( 𝑃  +  𝑄 )  ∈  ℂ ) | 
						
							| 35 | 23 27 34 | subadd2d | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ ) )  →  ( ( 𝑁  −  𝑅 )  =  ( 𝑃  +  𝑄 )  ↔  ( ( 𝑃  +  𝑄 )  +  𝑅 )  =  𝑁 ) ) | 
						
							| 36 | 35 | biimprd | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ ) )  →  ( ( ( 𝑃  +  𝑄 )  +  𝑅 )  =  𝑁  →  ( 𝑁  −  𝑅 )  =  ( 𝑃  +  𝑄 ) ) ) | 
						
							| 37 | 20 36 | biimtrid | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ ) )  →  ( 𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  →  ( 𝑁  −  𝑅 )  =  ( 𝑃  +  𝑄 ) ) ) | 
						
							| 38 | 37 | 3impia | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( 𝑁  −  𝑅 )  =  ( 𝑃  +  𝑄 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( ¬  𝑅  =  2  ∧  ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) ) )  →  ( 𝑁  −  𝑅 )  =  ( 𝑃  +  𝑄 ) ) | 
						
							| 40 |  | odd2prm2 | ⊢ ( ( ( 𝑁  −  𝑅 )  ∈   Odd   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑁  −  𝑅 )  =  ( 𝑃  +  𝑄 ) )  →  ( 𝑃  =  2  ∨  𝑄  =  2 ) ) | 
						
							| 41 | 16 19 39 40 | syl3anc | ⊢ ( ( ¬  𝑅  =  2  ∧  ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) ) )  →  ( 𝑃  =  2  ∨  𝑄  =  2 ) ) | 
						
							| 42 | 41 | orcd | ⊢ ( ( ¬  𝑅  =  2  ∧  ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) ) )  →  ( ( 𝑃  =  2  ∨  𝑄  =  2 )  ∨  𝑅  =  2 ) ) | 
						
							| 43 | 42 | ex | ⊢ ( ¬  𝑅  =  2  →  ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( ( 𝑃  =  2  ∨  𝑄  =  2 )  ∨  𝑅  =  2 ) ) ) | 
						
							| 44 | 2 43 | pm2.61i | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( ( 𝑃  =  2  ∨  𝑄  =  2 )  ∨  𝑅  =  2 ) ) | 
						
							| 45 |  | df-3or | ⊢ ( ( 𝑃  =  2  ∨  𝑄  =  2  ∨  𝑅  =  2 )  ↔  ( ( 𝑃  =  2  ∨  𝑄  =  2 )  ∨  𝑅  =  2 ) ) | 
						
							| 46 | 44 45 | sylibr | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( 𝑃  =  2  ∨  𝑄  =  2  ∨  𝑅  =  2 ) ) |