| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2evenALTV | ⊢ 2  ∈   Even | 
						
							| 2 |  | epee | ⊢ ( ( 𝑁  ∈   Even   ∧  2  ∈   Even  )  →  ( 𝑁  +  2 )  ∈   Even  ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝑁  ∈   Even   →  ( 𝑁  +  2 )  ∈   Even  ) | 
						
							| 4 | 3 | 3ad2ant2 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even   ∧  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( 𝑁  +  2 )  ∈   Even  ) | 
						
							| 5 |  | simp1 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even   ∧  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ ) ) | 
						
							| 6 |  | simp3 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even   ∧  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) ) | 
						
							| 7 |  | even3prm2 | ⊢ ( ( ( 𝑁  +  2 )  ∈   Even   ∧  ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( 𝑃  =  2  ∨  𝑄  =  2  ∨  𝑅  =  2 ) ) | 
						
							| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even   ∧  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( 𝑃  =  2  ∨  𝑄  =  2  ∨  𝑅  =  2 ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑃  =  2  →  ( 𝑃  +  𝑄 )  =  ( 2  +  𝑄 ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( 𝑃  =  2  →  ( ( 𝑃  +  𝑄 )  +  𝑅 )  =  ( ( 2  +  𝑄 )  +  𝑅 ) ) | 
						
							| 11 | 10 | eqeq2d | ⊢ ( 𝑃  =  2  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  ↔  ( 𝑁  +  2 )  =  ( ( 2  +  𝑄 )  +  𝑅 ) ) ) | 
						
							| 12 |  | 2cnd | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  2  ∈  ℂ ) | 
						
							| 13 |  | prmz | ⊢ ( 𝑄  ∈  ℙ  →  𝑄  ∈  ℤ ) | 
						
							| 14 | 13 | zcnd | ⊢ ( 𝑄  ∈  ℙ  →  𝑄  ∈  ℂ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  𝑄  ∈  ℂ ) | 
						
							| 16 |  | prmz | ⊢ ( 𝑅  ∈  ℙ  →  𝑅  ∈  ℤ ) | 
						
							| 17 | 16 | zcnd | ⊢ ( 𝑅  ∈  ℙ  →  𝑅  ∈  ℂ ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  𝑅  ∈  ℂ ) | 
						
							| 19 |  | simp1 | ⊢ ( ( 2  ∈  ℂ  ∧  𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  2  ∈  ℂ ) | 
						
							| 20 |  | addcl | ⊢ ( ( 𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( 𝑄  +  𝑅 )  ∈  ℂ ) | 
						
							| 21 | 20 | 3adant1 | ⊢ ( ( 2  ∈  ℂ  ∧  𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( 𝑄  +  𝑅 )  ∈  ℂ ) | 
						
							| 22 |  | addass | ⊢ ( ( 2  ∈  ℂ  ∧  𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( ( 2  +  𝑄 )  +  𝑅 )  =  ( 2  +  ( 𝑄  +  𝑅 ) ) ) | 
						
							| 23 | 19 21 22 | comraddd | ⊢ ( ( 2  ∈  ℂ  ∧  𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( ( 2  +  𝑄 )  +  𝑅 )  =  ( ( 𝑄  +  𝑅 )  +  2 ) ) | 
						
							| 24 | 12 15 18 23 | syl3anc | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( ( 2  +  𝑄 )  +  𝑅 )  =  ( ( 𝑄  +  𝑅 )  +  2 ) ) | 
						
							| 25 | 24 | eqeq2d | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( ( 𝑁  +  2 )  =  ( ( 2  +  𝑄 )  +  𝑅 )  ↔  ( 𝑁  +  2 )  =  ( ( 𝑄  +  𝑅 )  +  2 ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  +  2 )  =  ( ( 2  +  𝑄 )  +  𝑅 )  ↔  ( 𝑁  +  2 )  =  ( ( 𝑄  +  𝑅 )  +  2 ) ) ) | 
						
							| 27 |  | evenz | ⊢ ( 𝑁  ∈   Even   →  𝑁  ∈  ℤ ) | 
						
							| 28 | 27 | zcnd | ⊢ ( 𝑁  ∈   Even   →  𝑁  ∈  ℂ ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  𝑁  ∈  ℂ ) | 
						
							| 30 |  | zaddcl | ⊢ ( ( 𝑄  ∈  ℤ  ∧  𝑅  ∈  ℤ )  →  ( 𝑄  +  𝑅 )  ∈  ℤ ) | 
						
							| 31 | 13 16 30 | syl2an | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑄  +  𝑅 )  ∈  ℤ ) | 
						
							| 32 | 31 | zcnd | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑄  +  𝑅 )  ∈  ℂ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( 𝑄  +  𝑅 )  ∈  ℂ ) | 
						
							| 34 |  | 2cnd | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  2  ∈  ℂ ) | 
						
							| 35 | 29 33 34 | addcan2d | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  +  2 )  =  ( ( 𝑄  +  𝑅 )  +  2 )  ↔  𝑁  =  ( 𝑄  +  𝑅 ) ) ) | 
						
							| 36 | 26 35 | bitrd | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  +  2 )  =  ( ( 2  +  𝑄 )  +  𝑅 )  ↔  𝑁  =  ( 𝑄  +  𝑅 ) ) ) | 
						
							| 37 |  | simpll | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑄  +  𝑅 ) )  →  𝑄  ∈  ℙ ) | 
						
							| 38 |  | oveq1 | ⊢ ( 𝑝  =  𝑄  →  ( 𝑝  +  𝑞 )  =  ( 𝑄  +  𝑞 ) ) | 
						
							| 39 | 38 | eqeq2d | ⊢ ( 𝑝  =  𝑄  →  ( 𝑁  =  ( 𝑝  +  𝑞 )  ↔  𝑁  =  ( 𝑄  +  𝑞 ) ) ) | 
						
							| 40 | 39 | rexbidv | ⊢ ( 𝑝  =  𝑄  →  ( ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 )  ↔  ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑄  +  𝑞 ) ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑄  +  𝑅 ) )  ∧  𝑝  =  𝑄 )  →  ( ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 )  ↔  ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑄  +  𝑞 ) ) ) | 
						
							| 42 |  | simplr | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑄  +  𝑅 ) )  →  𝑅  ∈  ℙ ) | 
						
							| 43 |  | simpr | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑄  +  𝑅 ) )  →  𝑁  =  ( 𝑄  +  𝑅 ) ) | 
						
							| 44 |  | oveq2 | ⊢ ( 𝑞  =  𝑅  →  ( 𝑄  +  𝑞 )  =  ( 𝑄  +  𝑅 ) ) | 
						
							| 45 | 44 | eqcomd | ⊢ ( 𝑞  =  𝑅  →  ( 𝑄  +  𝑅 )  =  ( 𝑄  +  𝑞 ) ) | 
						
							| 46 | 43 45 | sylan9eq | ⊢ ( ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑄  +  𝑅 ) )  ∧  𝑞  =  𝑅 )  →  𝑁  =  ( 𝑄  +  𝑞 ) ) | 
						
							| 47 | 42 46 | rspcedeq2vd | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑄  +  𝑅 ) )  →  ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑄  +  𝑞 ) ) | 
						
							| 48 | 37 41 47 | rspcedvd | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑄  +  𝑅 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 49 | 48 | ex | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑁  =  ( 𝑄  +  𝑅 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( 𝑁  =  ( 𝑄  +  𝑅 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 51 | 36 50 | sylbid | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  +  2 )  =  ( ( 2  +  𝑄 )  +  𝑅 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 52 | 51 | com12 | ⊢ ( ( 𝑁  +  2 )  =  ( ( 2  +  𝑄 )  +  𝑅 )  →  ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 53 | 11 52 | biimtrdi | ⊢ ( 𝑃  =  2  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  →  ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 54 | 53 | com13 | ⊢ ( ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  →  ( 𝑃  =  2  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 55 | 54 | ex | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑁  ∈   Even   →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  →  ( 𝑃  =  2  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) ) ) | 
						
							| 56 | 55 | 3adant1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑁  ∈   Even   →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  →  ( 𝑃  =  2  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) ) ) | 
						
							| 57 | 56 | 3imp | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even   ∧  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( 𝑃  =  2  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 58 | 57 | com12 | ⊢ ( 𝑃  =  2  →  ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even   ∧  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 59 |  | oveq2 | ⊢ ( 𝑄  =  2  →  ( 𝑃  +  𝑄 )  =  ( 𝑃  +  2 ) ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( 𝑄  =  2  →  ( ( 𝑃  +  𝑄 )  +  𝑅 )  =  ( ( 𝑃  +  2 )  +  𝑅 ) ) | 
						
							| 61 | 60 | eqeq2d | ⊢ ( 𝑄  =  2  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  ↔  ( 𝑁  +  2 )  =  ( ( 𝑃  +  2 )  +  𝑅 ) ) ) | 
						
							| 62 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 63 | 62 | zcnd | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℂ ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  𝑃  ∈  ℂ ) | 
						
							| 65 |  | 2cnd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  2  ∈  ℂ ) | 
						
							| 66 | 17 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  𝑅  ∈  ℂ ) | 
						
							| 67 | 64 65 66 | 3jca | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑃  ∈  ℂ  ∧  2  ∈  ℂ  ∧  𝑅  ∈  ℂ ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( 𝑃  ∈  ℂ  ∧  2  ∈  ℂ  ∧  𝑅  ∈  ℂ ) ) | 
						
							| 69 |  | add32 | ⊢ ( ( 𝑃  ∈  ℂ  ∧  2  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( ( 𝑃  +  2 )  +  𝑅 )  =  ( ( 𝑃  +  𝑅 )  +  2 ) ) | 
						
							| 70 | 68 69 | syl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑃  +  2 )  +  𝑅 )  =  ( ( 𝑃  +  𝑅 )  +  2 ) ) | 
						
							| 71 | 70 | eqeq2d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  2 )  +  𝑅 )  ↔  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑅 )  +  2 ) ) ) | 
						
							| 72 | 28 | adantl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  𝑁  ∈  ℂ ) | 
						
							| 73 |  | zaddcl | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑅  ∈  ℤ )  →  ( 𝑃  +  𝑅 )  ∈  ℤ ) | 
						
							| 74 | 62 16 73 | syl2an | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑃  +  𝑅 )  ∈  ℤ ) | 
						
							| 75 | 74 | zcnd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑃  +  𝑅 )  ∈  ℂ ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( 𝑃  +  𝑅 )  ∈  ℂ ) | 
						
							| 77 |  | 2cnd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  2  ∈  ℂ ) | 
						
							| 78 | 72 76 77 | addcan2d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑅 )  +  2 )  ↔  𝑁  =  ( 𝑃  +  𝑅 ) ) ) | 
						
							| 79 | 71 78 | bitrd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  2 )  +  𝑅 )  ↔  𝑁  =  ( 𝑃  +  𝑅 ) ) ) | 
						
							| 80 |  | simpll | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑅 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 81 |  | oveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝  +  𝑞 )  =  ( 𝑃  +  𝑞 ) ) | 
						
							| 82 | 81 | eqeq2d | ⊢ ( 𝑝  =  𝑃  →  ( 𝑁  =  ( 𝑝  +  𝑞 )  ↔  𝑁  =  ( 𝑃  +  𝑞 ) ) ) | 
						
							| 83 | 82 | rexbidv | ⊢ ( 𝑝  =  𝑃  →  ( ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 )  ↔  ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑃  +  𝑞 ) ) ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑅 ) )  ∧  𝑝  =  𝑃 )  →  ( ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 )  ↔  ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑃  +  𝑞 ) ) ) | 
						
							| 85 |  | simplr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑅 ) )  →  𝑅  ∈  ℙ ) | 
						
							| 86 |  | simpr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑅 ) )  →  𝑁  =  ( 𝑃  +  𝑅 ) ) | 
						
							| 87 |  | oveq2 | ⊢ ( 𝑞  =  𝑅  →  ( 𝑃  +  𝑞 )  =  ( 𝑃  +  𝑅 ) ) | 
						
							| 88 | 87 | eqcomd | ⊢ ( 𝑞  =  𝑅  →  ( 𝑃  +  𝑅 )  =  ( 𝑃  +  𝑞 ) ) | 
						
							| 89 | 86 88 | sylan9eq | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑅 ) )  ∧  𝑞  =  𝑅 )  →  𝑁  =  ( 𝑃  +  𝑞 ) ) | 
						
							| 90 | 85 89 | rspcedeq2vd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑅 ) )  →  ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑃  +  𝑞 ) ) | 
						
							| 91 | 80 84 90 | rspcedvd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑅 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 92 | 91 | ex | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑁  =  ( 𝑃  +  𝑅 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( 𝑁  =  ( 𝑃  +  𝑅 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 94 | 79 93 | sylbid | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  2 )  +  𝑅 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 95 | 94 | com12 | ⊢ ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  2 )  +  𝑅 )  →  ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 96 | 61 95 | biimtrdi | ⊢ ( 𝑄  =  2  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  →  ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 97 | 96 | com13 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  →  ( 𝑄  =  2  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 98 | 97 | ex | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑁  ∈   Even   →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  →  ( 𝑄  =  2  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) ) ) | 
						
							| 99 | 98 | 3adant2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑁  ∈   Even   →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  →  ( 𝑄  =  2  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) ) ) | 
						
							| 100 | 99 | 3imp | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even   ∧  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( 𝑄  =  2  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 101 | 100 | com12 | ⊢ ( 𝑄  =  2  →  ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even   ∧  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 102 |  | oveq2 | ⊢ ( 𝑅  =  2  →  ( ( 𝑃  +  𝑄 )  +  𝑅 )  =  ( ( 𝑃  +  𝑄 )  +  2 ) ) | 
						
							| 103 | 102 | eqeq2d | ⊢ ( 𝑅  =  2  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  ↔  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  2 ) ) ) | 
						
							| 104 | 28 | adantl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  𝑁  ∈  ℂ ) | 
						
							| 105 |  | zaddcl | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑄  ∈  ℤ )  →  ( 𝑃  +  𝑄 )  ∈  ℤ ) | 
						
							| 106 | 62 13 105 | syl2an | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( 𝑃  +  𝑄 )  ∈  ℤ ) | 
						
							| 107 | 106 | zcnd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( 𝑃  +  𝑄 )  ∈  ℂ ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( 𝑃  +  𝑄 )  ∈  ℂ ) | 
						
							| 109 |  | 2cnd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  2  ∈  ℂ ) | 
						
							| 110 | 104 108 109 | addcan2d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  2 )  ↔  𝑁  =  ( 𝑃  +  𝑄 ) ) ) | 
						
							| 111 |  | simpll | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑄 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 112 | 83 | adantl | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑄 ) )  ∧  𝑝  =  𝑃 )  →  ( ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 )  ↔  ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑃  +  𝑞 ) ) ) | 
						
							| 113 |  | simplr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑄 ) )  →  𝑄  ∈  ℙ ) | 
						
							| 114 |  | simpr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑄 ) )  →  𝑁  =  ( 𝑃  +  𝑄 ) ) | 
						
							| 115 |  | oveq2 | ⊢ ( 𝑞  =  𝑄  →  ( 𝑃  +  𝑞 )  =  ( 𝑃  +  𝑄 ) ) | 
						
							| 116 | 115 | eqcomd | ⊢ ( 𝑞  =  𝑄  →  ( 𝑃  +  𝑄 )  =  ( 𝑃  +  𝑞 ) ) | 
						
							| 117 | 114 116 | sylan9eq | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑄 ) )  ∧  𝑞  =  𝑄 )  →  𝑁  =  ( 𝑃  +  𝑞 ) ) | 
						
							| 118 | 113 117 | rspcedeq2vd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑄 ) )  →  ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑃  +  𝑞 ) ) | 
						
							| 119 | 111 112 118 | rspcedvd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  =  ( 𝑃  +  𝑄 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 120 | 119 | ex | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( 𝑁  =  ( 𝑃  +  𝑄 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 121 | 120 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( 𝑁  =  ( 𝑃  +  𝑄 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 122 | 110 121 | sylbid | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  2 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 123 | 122 | com12 | ⊢ ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  2 )  →  ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 124 | 103 123 | biimtrdi | ⊢ ( 𝑅  =  2  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  →  ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 125 | 124 | com13 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  →  ( 𝑅  =  2  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 126 | 125 | ex | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( 𝑁  ∈   Even   →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  →  ( 𝑅  =  2  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) ) ) | 
						
							| 127 | 126 | 3adant3 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  →  ( 𝑁  ∈   Even   →  ( ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 )  →  ( 𝑅  =  2  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) ) ) | 
						
							| 128 | 127 | 3imp | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even   ∧  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ( 𝑅  =  2  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 129 | 128 | com12 | ⊢ ( 𝑅  =  2  →  ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even   ∧  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 130 | 58 101 129 | 3jaoi | ⊢ ( ( 𝑃  =  2  ∨  𝑄  =  2  ∨  𝑅  =  2 )  →  ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even   ∧  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 131 | 8 130 | mpcom | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑅  ∈  ℙ )  ∧  𝑁  ∈   Even   ∧  ( 𝑁  +  2 )  =  ( ( 𝑃  +  𝑄 )  +  𝑅 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑁  =  ( 𝑝  +  𝑞 ) ) |