Step |
Hyp |
Ref |
Expression |
1 |
|
2evenALTV |
⊢ 2 ∈ Even |
2 |
|
epee |
⊢ ( ( 𝑁 ∈ Even ∧ 2 ∈ Even ) → ( 𝑁 + 2 ) ∈ Even ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝑁 ∈ Even → ( 𝑁 + 2 ) ∈ Even ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ∧ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) → ( 𝑁 + 2 ) ∈ Even ) |
5 |
|
simp1 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ∧ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) → ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ) |
6 |
|
simp3 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ∧ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) → ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) |
7 |
|
even3prm2 |
⊢ ( ( ( 𝑁 + 2 ) ∈ Even ∧ ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) → ( 𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2 ) ) |
8 |
4 5 6 7
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ∧ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) → ( 𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑃 = 2 → ( 𝑃 + 𝑄 ) = ( 2 + 𝑄 ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑃 = 2 → ( ( 𝑃 + 𝑄 ) + 𝑅 ) = ( ( 2 + 𝑄 ) + 𝑅 ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝑃 = 2 → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ↔ ( 𝑁 + 2 ) = ( ( 2 + 𝑄 ) + 𝑅 ) ) ) |
12 |
|
2cnd |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → 2 ∈ ℂ ) |
13 |
|
prmz |
⊢ ( 𝑄 ∈ ℙ → 𝑄 ∈ ℤ ) |
14 |
13
|
zcnd |
⊢ ( 𝑄 ∈ ℙ → 𝑄 ∈ ℂ ) |
15 |
14
|
adantr |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → 𝑄 ∈ ℂ ) |
16 |
|
prmz |
⊢ ( 𝑅 ∈ ℙ → 𝑅 ∈ ℤ ) |
17 |
16
|
zcnd |
⊢ ( 𝑅 ∈ ℙ → 𝑅 ∈ ℂ ) |
18 |
17
|
adantl |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → 𝑅 ∈ ℂ ) |
19 |
|
simp1 |
⊢ ( ( 2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → 2 ∈ ℂ ) |
20 |
|
addcl |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( 𝑄 + 𝑅 ) ∈ ℂ ) |
21 |
20
|
3adant1 |
⊢ ( ( 2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( 𝑄 + 𝑅 ) ∈ ℂ ) |
22 |
|
addass |
⊢ ( ( 2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( ( 2 + 𝑄 ) + 𝑅 ) = ( 2 + ( 𝑄 + 𝑅 ) ) ) |
23 |
19 21 22
|
comraddd |
⊢ ( ( 2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( ( 2 + 𝑄 ) + 𝑅 ) = ( ( 𝑄 + 𝑅 ) + 2 ) ) |
24 |
12 15 18 23
|
syl3anc |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( ( 2 + 𝑄 ) + 𝑅 ) = ( ( 𝑄 + 𝑅 ) + 2 ) ) |
25 |
24
|
eqeq2d |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( ( 𝑁 + 2 ) = ( ( 2 + 𝑄 ) + 𝑅 ) ↔ ( 𝑁 + 2 ) = ( ( 𝑄 + 𝑅 ) + 2 ) ) ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 + 2 ) = ( ( 2 + 𝑄 ) + 𝑅 ) ↔ ( 𝑁 + 2 ) = ( ( 𝑄 + 𝑅 ) + 2 ) ) ) |
27 |
|
evenz |
⊢ ( 𝑁 ∈ Even → 𝑁 ∈ ℤ ) |
28 |
27
|
zcnd |
⊢ ( 𝑁 ∈ Even → 𝑁 ∈ ℂ ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈ ℂ ) |
30 |
|
zaddcl |
⊢ ( ( 𝑄 ∈ ℤ ∧ 𝑅 ∈ ℤ ) → ( 𝑄 + 𝑅 ) ∈ ℤ ) |
31 |
13 16 30
|
syl2an |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( 𝑄 + 𝑅 ) ∈ ℤ ) |
32 |
31
|
zcnd |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( 𝑄 + 𝑅 ) ∈ ℂ ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( 𝑄 + 𝑅 ) ∈ ℂ ) |
34 |
|
2cnd |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → 2 ∈ ℂ ) |
35 |
29 33 34
|
addcan2d |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 + 2 ) = ( ( 𝑄 + 𝑅 ) + 2 ) ↔ 𝑁 = ( 𝑄 + 𝑅 ) ) ) |
36 |
26 35
|
bitrd |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 + 2 ) = ( ( 2 + 𝑄 ) + 𝑅 ) ↔ 𝑁 = ( 𝑄 + 𝑅 ) ) ) |
37 |
|
simpll |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑄 + 𝑅 ) ) → 𝑄 ∈ ℙ ) |
38 |
|
oveq1 |
⊢ ( 𝑝 = 𝑄 → ( 𝑝 + 𝑞 ) = ( 𝑄 + 𝑞 ) ) |
39 |
38
|
eqeq2d |
⊢ ( 𝑝 = 𝑄 → ( 𝑁 = ( 𝑝 + 𝑞 ) ↔ 𝑁 = ( 𝑄 + 𝑞 ) ) ) |
40 |
39
|
rexbidv |
⊢ ( 𝑝 = 𝑄 → ( ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ↔ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑄 + 𝑞 ) ) ) |
41 |
40
|
adantl |
⊢ ( ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑄 + 𝑅 ) ) ∧ 𝑝 = 𝑄 ) → ( ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ↔ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑄 + 𝑞 ) ) ) |
42 |
|
simplr |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑄 + 𝑅 ) ) → 𝑅 ∈ ℙ ) |
43 |
|
simpr |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑄 + 𝑅 ) ) → 𝑁 = ( 𝑄 + 𝑅 ) ) |
44 |
|
oveq2 |
⊢ ( 𝑞 = 𝑅 → ( 𝑄 + 𝑞 ) = ( 𝑄 + 𝑅 ) ) |
45 |
44
|
eqcomd |
⊢ ( 𝑞 = 𝑅 → ( 𝑄 + 𝑅 ) = ( 𝑄 + 𝑞 ) ) |
46 |
43 45
|
sylan9eq |
⊢ ( ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑄 + 𝑅 ) ) ∧ 𝑞 = 𝑅 ) → 𝑁 = ( 𝑄 + 𝑞 ) ) |
47 |
42 46
|
rspcedeq2vd |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑄 + 𝑅 ) ) → ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑄 + 𝑞 ) ) |
48 |
37 41 47
|
rspcedvd |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑄 + 𝑅 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) |
49 |
48
|
ex |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( 𝑁 = ( 𝑄 + 𝑅 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( 𝑁 = ( 𝑄 + 𝑅 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
51 |
36 50
|
sylbid |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 + 2 ) = ( ( 2 + 𝑄 ) + 𝑅 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
52 |
51
|
com12 |
⊢ ( ( 𝑁 + 2 ) = ( ( 2 + 𝑄 ) + 𝑅 ) → ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
53 |
11 52
|
syl6bi |
⊢ ( 𝑃 = 2 → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) → ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) ) |
54 |
53
|
com13 |
⊢ ( ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) → ( 𝑃 = 2 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) ) |
55 |
54
|
ex |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( 𝑁 ∈ Even → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) → ( 𝑃 = 2 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) ) ) |
56 |
55
|
3adant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( 𝑁 ∈ Even → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) → ( 𝑃 = 2 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) ) ) |
57 |
56
|
3imp |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ∧ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) → ( 𝑃 = 2 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
58 |
57
|
com12 |
⊢ ( 𝑃 = 2 → ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ∧ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
59 |
|
oveq2 |
⊢ ( 𝑄 = 2 → ( 𝑃 + 𝑄 ) = ( 𝑃 + 2 ) ) |
60 |
59
|
oveq1d |
⊢ ( 𝑄 = 2 → ( ( 𝑃 + 𝑄 ) + 𝑅 ) = ( ( 𝑃 + 2 ) + 𝑅 ) ) |
61 |
60
|
eqeq2d |
⊢ ( 𝑄 = 2 → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ↔ ( 𝑁 + 2 ) = ( ( 𝑃 + 2 ) + 𝑅 ) ) ) |
62 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
63 |
62
|
zcnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
64 |
63
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → 𝑃 ∈ ℂ ) |
65 |
|
2cnd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → 2 ∈ ℂ ) |
66 |
17
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → 𝑅 ∈ ℂ ) |
67 |
64 65 66
|
3jca |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( 𝑃 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( 𝑃 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) |
69 |
|
add32 |
⊢ ( ( 𝑃 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( ( 𝑃 + 2 ) + 𝑅 ) = ( ( 𝑃 + 𝑅 ) + 2 ) ) |
70 |
68 69
|
syl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑃 + 2 ) + 𝑅 ) = ( ( 𝑃 + 𝑅 ) + 2 ) ) |
71 |
70
|
eqeq2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 2 ) + 𝑅 ) ↔ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑅 ) + 2 ) ) ) |
72 |
28
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈ ℂ ) |
73 |
|
zaddcl |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑅 ∈ ℤ ) → ( 𝑃 + 𝑅 ) ∈ ℤ ) |
74 |
62 16 73
|
syl2an |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( 𝑃 + 𝑅 ) ∈ ℤ ) |
75 |
74
|
zcnd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( 𝑃 + 𝑅 ) ∈ ℂ ) |
76 |
75
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( 𝑃 + 𝑅 ) ∈ ℂ ) |
77 |
|
2cnd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → 2 ∈ ℂ ) |
78 |
72 76 77
|
addcan2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑅 ) + 2 ) ↔ 𝑁 = ( 𝑃 + 𝑅 ) ) ) |
79 |
71 78
|
bitrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 2 ) + 𝑅 ) ↔ 𝑁 = ( 𝑃 + 𝑅 ) ) ) |
80 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑅 ) ) → 𝑃 ∈ ℙ ) |
81 |
|
oveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 + 𝑞 ) = ( 𝑃 + 𝑞 ) ) |
82 |
81
|
eqeq2d |
⊢ ( 𝑝 = 𝑃 → ( 𝑁 = ( 𝑝 + 𝑞 ) ↔ 𝑁 = ( 𝑃 + 𝑞 ) ) ) |
83 |
82
|
rexbidv |
⊢ ( 𝑝 = 𝑃 → ( ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ↔ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑃 + 𝑞 ) ) ) |
84 |
83
|
adantl |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑅 ) ) ∧ 𝑝 = 𝑃 ) → ( ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ↔ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑃 + 𝑞 ) ) ) |
85 |
|
simplr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑅 ) ) → 𝑅 ∈ ℙ ) |
86 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑅 ) ) → 𝑁 = ( 𝑃 + 𝑅 ) ) |
87 |
|
oveq2 |
⊢ ( 𝑞 = 𝑅 → ( 𝑃 + 𝑞 ) = ( 𝑃 + 𝑅 ) ) |
88 |
87
|
eqcomd |
⊢ ( 𝑞 = 𝑅 → ( 𝑃 + 𝑅 ) = ( 𝑃 + 𝑞 ) ) |
89 |
86 88
|
sylan9eq |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑅 ) ) ∧ 𝑞 = 𝑅 ) → 𝑁 = ( 𝑃 + 𝑞 ) ) |
90 |
85 89
|
rspcedeq2vd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑅 ) ) → ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑃 + 𝑞 ) ) |
91 |
80 84 90
|
rspcedvd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑅 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) |
92 |
91
|
ex |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( 𝑁 = ( 𝑃 + 𝑅 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
93 |
92
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( 𝑁 = ( 𝑃 + 𝑅 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
94 |
79 93
|
sylbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 2 ) + 𝑅 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
95 |
94
|
com12 |
⊢ ( ( 𝑁 + 2 ) = ( ( 𝑃 + 2 ) + 𝑅 ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
96 |
61 95
|
syl6bi |
⊢ ( 𝑄 = 2 → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) ) |
97 |
96
|
com13 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) → ( 𝑄 = 2 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) ) |
98 |
97
|
ex |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( 𝑁 ∈ Even → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) → ( 𝑄 = 2 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) ) ) |
99 |
98
|
3adant2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( 𝑁 ∈ Even → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) → ( 𝑄 = 2 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) ) ) |
100 |
99
|
3imp |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ∧ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) → ( 𝑄 = 2 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
101 |
100
|
com12 |
⊢ ( 𝑄 = 2 → ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ∧ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
102 |
|
oveq2 |
⊢ ( 𝑅 = 2 → ( ( 𝑃 + 𝑄 ) + 𝑅 ) = ( ( 𝑃 + 𝑄 ) + 2 ) ) |
103 |
102
|
eqeq2d |
⊢ ( 𝑅 = 2 → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ↔ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 2 ) ) ) |
104 |
28
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈ ℂ ) |
105 |
|
zaddcl |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ) → ( 𝑃 + 𝑄 ) ∈ ℤ ) |
106 |
62 13 105
|
syl2an |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( 𝑃 + 𝑄 ) ∈ ℤ ) |
107 |
106
|
zcnd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( 𝑃 + 𝑄 ) ∈ ℂ ) |
108 |
107
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( 𝑃 + 𝑄 ) ∈ ℂ ) |
109 |
|
2cnd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → 2 ∈ ℂ ) |
110 |
104 108 109
|
addcan2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 2 ) ↔ 𝑁 = ( 𝑃 + 𝑄 ) ) ) |
111 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑄 ) ) → 𝑃 ∈ ℙ ) |
112 |
83
|
adantl |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑄 ) ) ∧ 𝑝 = 𝑃 ) → ( ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ↔ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑃 + 𝑞 ) ) ) |
113 |
|
simplr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑄 ) ) → 𝑄 ∈ ℙ ) |
114 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑄 ) ) → 𝑁 = ( 𝑃 + 𝑄 ) ) |
115 |
|
oveq2 |
⊢ ( 𝑞 = 𝑄 → ( 𝑃 + 𝑞 ) = ( 𝑃 + 𝑄 ) ) |
116 |
115
|
eqcomd |
⊢ ( 𝑞 = 𝑄 → ( 𝑃 + 𝑄 ) = ( 𝑃 + 𝑞 ) ) |
117 |
114 116
|
sylan9eq |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑄 ) ) ∧ 𝑞 = 𝑄 ) → 𝑁 = ( 𝑃 + 𝑞 ) ) |
118 |
113 117
|
rspcedeq2vd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑄 ) ) → ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑃 + 𝑞 ) ) |
119 |
111 112 118
|
rspcedvd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 = ( 𝑃 + 𝑄 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) |
120 |
119
|
ex |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( 𝑁 = ( 𝑃 + 𝑄 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
121 |
120
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( 𝑁 = ( 𝑃 + 𝑄 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
122 |
110 121
|
sylbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 2 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
123 |
122
|
com12 |
⊢ ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 2 ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
124 |
103 123
|
syl6bi |
⊢ ( 𝑅 = 2 → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) ) |
125 |
124
|
com13 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) → ( 𝑅 = 2 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) ) |
126 |
125
|
ex |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( 𝑁 ∈ Even → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) → ( 𝑅 = 2 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) ) ) |
127 |
126
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) → ( 𝑁 ∈ Even → ( ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) → ( 𝑅 = 2 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) ) ) |
128 |
127
|
3imp |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ∧ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) → ( 𝑅 = 2 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
129 |
128
|
com12 |
⊢ ( 𝑅 = 2 → ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ∧ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
130 |
58 101 129
|
3jaoi |
⊢ ( ( 𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2 ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ∧ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) ) |
131 |
8 130
|
mpcom |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ ) ∧ 𝑁 ∈ Even ∧ ( 𝑁 + 2 ) = ( ( 𝑃 + 𝑄 ) + 𝑅 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑁 = ( 𝑝 + 𝑞 ) ) |