| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) | 
						
							| 2 |  | eqeq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 3 | 2 | rexbidv | ⊢ ( 𝑛  =  𝑚  →  ( ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 4 | 3 | 2rexbidv | ⊢ ( 𝑛  =  𝑚  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 5 | 4 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∀ 𝑚  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 6 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 7 | 6 | nnzi | ⊢ 6  ∈  ℤ | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  6  ∈  ℤ ) | 
						
							| 9 |  | evenz | ⊢ ( 𝑛  ∈   Even   →  𝑛  ∈  ℤ ) | 
						
							| 10 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑛  ∈   Even   →  2  ∈  ℤ ) | 
						
							| 12 | 9 11 | zaddcld | ⊢ ( 𝑛  ∈   Even   →  ( 𝑛  +  2 )  ∈  ℤ ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  ( 𝑛  +  2 )  ∈  ℤ ) | 
						
							| 14 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 15 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 16 |  | 4p2e6 | ⊢ ( 4  +  2 )  =  6 | 
						
							| 17 | 16 | eqcomi | ⊢ 6  =  ( 4  +  2 ) | 
						
							| 18 | 14 15 17 | mvrraddi | ⊢ ( 6  −  2 )  =  4 | 
						
							| 19 |  | 2p2e4 | ⊢ ( 2  +  2 )  =  4 | 
						
							| 20 |  | 2evenALTV | ⊢ 2  ∈   Even | 
						
							| 21 |  | evenltle | ⊢ ( ( 𝑛  ∈   Even   ∧  2  ∈   Even   ∧  2  <  𝑛 )  →  ( 2  +  2 )  ≤  𝑛 ) | 
						
							| 22 | 20 21 | mp3an2 | ⊢ ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  ( 2  +  2 )  ≤  𝑛 ) | 
						
							| 23 | 19 22 | eqbrtrrid | ⊢ ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  4  ≤  𝑛 ) | 
						
							| 24 | 18 23 | eqbrtrid | ⊢ ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  ( 6  −  2 )  ≤  𝑛 ) | 
						
							| 25 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 26 | 25 | a1i | ⊢ ( 𝑛  ∈   Even   →  6  ∈  ℝ ) | 
						
							| 27 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 28 | 27 | a1i | ⊢ ( 𝑛  ∈   Even   →  2  ∈  ℝ ) | 
						
							| 29 | 9 | zred | ⊢ ( 𝑛  ∈   Even   →  𝑛  ∈  ℝ ) | 
						
							| 30 | 26 28 29 | 3jca | ⊢ ( 𝑛  ∈   Even   →  ( 6  ∈  ℝ  ∧  2  ∈  ℝ  ∧  𝑛  ∈  ℝ ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  ( 6  ∈  ℝ  ∧  2  ∈  ℝ  ∧  𝑛  ∈  ℝ ) ) | 
						
							| 32 |  | lesubadd | ⊢ ( ( 6  ∈  ℝ  ∧  2  ∈  ℝ  ∧  𝑛  ∈  ℝ )  →  ( ( 6  −  2 )  ≤  𝑛  ↔  6  ≤  ( 𝑛  +  2 ) ) ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  ( ( 6  −  2 )  ≤  𝑛  ↔  6  ≤  ( 𝑛  +  2 ) ) ) | 
						
							| 34 | 24 33 | mpbid | ⊢ ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  6  ≤  ( 𝑛  +  2 ) ) | 
						
							| 35 |  | eluz2 | ⊢ ( ( 𝑛  +  2 )  ∈  ( ℤ≥ ‘ 6 )  ↔  ( 6  ∈  ℤ  ∧  ( 𝑛  +  2 )  ∈  ℤ  ∧  6  ≤  ( 𝑛  +  2 ) ) ) | 
						
							| 36 | 8 13 34 35 | syl3anbrc | ⊢ ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  ( 𝑛  +  2 )  ∈  ( ℤ≥ ‘ 6 ) ) | 
						
							| 37 |  | eqeq1 | ⊢ ( 𝑚  =  ( 𝑛  +  2 )  →  ( 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 38 | 37 | rexbidv | ⊢ ( 𝑚  =  ( 𝑛  +  2 )  →  ( ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑟  ∈  ℙ ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 39 | 38 | 2rexbidv | ⊢ ( 𝑚  =  ( 𝑛  +  2 )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 40 | 39 | rspcv | ⊢ ( ( 𝑛  +  2 )  ∈  ( ℤ≥ ‘ 6 )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 41 | 36 40 | syl | ⊢ ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 42 | 5 41 | biimtrid | ⊢ ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 43 |  | nfv | ⊢ Ⅎ 𝑝 ( 𝑛  ∈   Even   ∧  2  <  𝑛 ) | 
						
							| 44 |  | nfre1 | ⊢ Ⅎ 𝑝 ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑞 ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  ∧  𝑝  ∈  ℙ ) | 
						
							| 46 |  | nfcv | ⊢ Ⅎ 𝑞 ℙ | 
						
							| 47 |  | nfre1 | ⊢ Ⅎ 𝑞 ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) | 
						
							| 48 | 46 47 | nfrexw | ⊢ Ⅎ 𝑞 ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) | 
						
							| 49 |  | simplrl | ⊢ ( ( ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ ) )  ∧  𝑟  ∈  ℙ )  →  𝑝  ∈  ℙ ) | 
						
							| 50 |  | simplrr | ⊢ ( ( ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ ) )  ∧  𝑟  ∈  ℙ )  →  𝑞  ∈  ℙ ) | 
						
							| 51 |  | simpr | ⊢ ( ( ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ ) )  ∧  𝑟  ∈  ℙ )  →  𝑟  ∈  ℙ ) | 
						
							| 52 | 49 50 51 | 3jca | ⊢ ( ( ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ ) )  ∧  𝑟  ∈  ℙ )  →  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ  ∧  𝑟  ∈  ℙ ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ ) )  ∧  𝑟  ∈  ℙ )  ∧  ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ  ∧  𝑟  ∈  ℙ ) ) | 
						
							| 54 |  | simp-4l | ⊢ ( ( ( ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ ) )  ∧  𝑟  ∈  ℙ )  ∧  ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  𝑛  ∈   Even  ) | 
						
							| 55 |  | simpr | ⊢ ( ( ( ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ ) )  ∧  𝑟  ∈  ℙ )  ∧  ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 56 |  | mogoldbblem | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ  ∧  𝑟  ∈  ℙ )  ∧  𝑛  ∈   Even   ∧  ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  ∃ 𝑦  ∈  ℙ ∃ 𝑥  ∈  ℙ 𝑛  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 57 |  | oveq1 | ⊢ ( 𝑝  =  𝑦  →  ( 𝑝  +  𝑞 )  =  ( 𝑦  +  𝑞 ) ) | 
						
							| 58 | 57 | eqeq2d | ⊢ ( 𝑝  =  𝑦  →  ( 𝑛  =  ( 𝑝  +  𝑞 )  ↔  𝑛  =  ( 𝑦  +  𝑞 ) ) ) | 
						
							| 59 |  | oveq2 | ⊢ ( 𝑞  =  𝑥  →  ( 𝑦  +  𝑞 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 60 | 59 | eqeq2d | ⊢ ( 𝑞  =  𝑥  →  ( 𝑛  =  ( 𝑦  +  𝑞 )  ↔  𝑛  =  ( 𝑦  +  𝑥 ) ) ) | 
						
							| 61 | 58 60 | cbvrex2vw | ⊢ ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 )  ↔  ∃ 𝑦  ∈  ℙ ∃ 𝑥  ∈  ℙ 𝑛  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 62 | 56 61 | sylibr | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ  ∧  𝑟  ∈  ℙ )  ∧  𝑛  ∈   Even   ∧  ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 63 | 53 54 55 62 | syl3anc | ⊢ ( ( ( ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ ) )  ∧  𝑟  ∈  ℙ )  ∧  ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 64 | 63 | rexlimdva2 | ⊢ ( ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ ) )  →  ( ∃ 𝑟  ∈  ℙ ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 65 | 64 | expr | ⊢ ( ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  ∧  𝑝  ∈  ℙ )  →  ( 𝑞  ∈  ℙ  →  ( ∃ 𝑟  ∈  ℙ ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 66 | 45 48 65 | rexlimd | ⊢ ( ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  ∧  𝑝  ∈  ℙ )  →  ( ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 67 | 66 | ex | ⊢ ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  ( 𝑝  ∈  ℙ  →  ( ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 68 | 43 44 67 | rexlimd | ⊢ ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( 𝑛  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 69 | 42 68 | syldc | ⊢ ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ( ( 𝑛  ∈   Even   ∧  2  <  𝑛 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 70 | 69 | expd | ⊢ ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ( 𝑛  ∈   Even   →  ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 71 | 1 70 | ralrimi | ⊢ ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ∀ 𝑛  ∈   Even  ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) |