Metamath Proof Explorer


Theorem sbgoldbmb

Description: The strong binary Goldbach conjecture and the modern version of the original formulation of the Goldbach conjecture are equivalent. (Contributed by AV, 26-Dec-2021)

Ref Expression
Assertion sbgoldbmb ( ∀ 𝑛 ∈ Even ( 4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀ 𝑛 ∈ ( ℤ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) )

Proof

Step Hyp Ref Expression
1 sbgoldbm ( ∀ 𝑛 ∈ Even ( 4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀ 𝑛 ∈ ( ℤ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) )
2 mogoldbb ( ∀ 𝑛 ∈ ( ℤ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∀ 𝑛 ∈ Even ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) )
3 sbgoldbalt ( ∀ 𝑛 ∈ Even ( 4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀ 𝑛 ∈ Even ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) )
4 2 3 sylibr ( ∀ 𝑛 ∈ ( ℤ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∀ 𝑛 ∈ Even ( 4 < 𝑛𝑛 ∈ GoldbachEven ) )
5 1 4 impbii ( ∀ 𝑛 ∈ Even ( 4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀ 𝑛 ∈ ( ℤ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) )