| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbgoldbo.p | ⊢ 𝑃  =  ( { 1 }  ∪  ℙ ) | 
						
							| 2 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  ) | 
						
							| 3 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 4 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 5 | 4 | nnzi | ⊢ 6  ∈  ℤ | 
						
							| 6 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 7 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 8 |  | 3lt6 | ⊢ 3  <  6 | 
						
							| 9 | 6 7 8 | ltleii | ⊢ 3  ≤  6 | 
						
							| 10 |  | eluz2 | ⊢ ( 6  ∈  ( ℤ≥ ‘ 3 )  ↔  ( 3  ∈  ℤ  ∧  6  ∈  ℤ  ∧  3  ≤  6 ) ) | 
						
							| 11 | 3 5 9 10 | mpbir3an | ⊢ 6  ∈  ( ℤ≥ ‘ 3 ) | 
						
							| 12 |  | uzsplit | ⊢ ( 6  ∈  ( ℤ≥ ‘ 3 )  →  ( ℤ≥ ‘ 3 )  =  ( ( 3 ... ( 6  −  1 ) )  ∪  ( ℤ≥ ‘ 6 ) ) ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( 6  ∈  ( ℤ≥ ‘ 3 )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 3 )  ↔  𝑛  ∈  ( ( 3 ... ( 6  −  1 ) )  ∪  ( ℤ≥ ‘ 6 ) ) ) ) | 
						
							| 14 | 11 13 | ax-mp | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 3 )  ↔  𝑛  ∈  ( ( 3 ... ( 6  −  1 ) )  ∪  ( ℤ≥ ‘ 6 ) ) ) | 
						
							| 15 |  | elun | ⊢ ( 𝑛  ∈  ( ( 3 ... ( 6  −  1 ) )  ∪  ( ℤ≥ ‘ 6 ) )  ↔  ( 𝑛  ∈  ( 3 ... ( 6  −  1 ) )  ∨  𝑛  ∈  ( ℤ≥ ‘ 6 ) ) ) | 
						
							| 16 |  | 6m1e5 | ⊢ ( 6  −  1 )  =  5 | 
						
							| 17 | 16 | oveq2i | ⊢ ( 3 ... ( 6  −  1 ) )  =  ( 3 ... 5 ) | 
						
							| 18 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 19 | 18 | nnzi | ⊢ 5  ∈  ℤ | 
						
							| 20 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 21 |  | 3lt5 | ⊢ 3  <  5 | 
						
							| 22 | 6 20 21 | ltleii | ⊢ 3  ≤  5 | 
						
							| 23 |  | eluz2 | ⊢ ( 5  ∈  ( ℤ≥ ‘ 3 )  ↔  ( 3  ∈  ℤ  ∧  5  ∈  ℤ  ∧  3  ≤  5 ) ) | 
						
							| 24 | 3 19 22 23 | mpbir3an | ⊢ 5  ∈  ( ℤ≥ ‘ 3 ) | 
						
							| 25 |  | fzopredsuc | ⊢ ( 5  ∈  ( ℤ≥ ‘ 3 )  →  ( 3 ... 5 )  =  ( ( { 3 }  ∪  ( ( 3  +  1 ) ..^ 5 ) )  ∪  { 5 } ) ) | 
						
							| 26 | 24 25 | ax-mp | ⊢ ( 3 ... 5 )  =  ( ( { 3 }  ∪  ( ( 3  +  1 ) ..^ 5 ) )  ∪  { 5 } ) | 
						
							| 27 | 17 26 | eqtri | ⊢ ( 3 ... ( 6  −  1 ) )  =  ( ( { 3 }  ∪  ( ( 3  +  1 ) ..^ 5 ) )  ∪  { 5 } ) | 
						
							| 28 | 27 | eleq2i | ⊢ ( 𝑛  ∈  ( 3 ... ( 6  −  1 ) )  ↔  𝑛  ∈  ( ( { 3 }  ∪  ( ( 3  +  1 ) ..^ 5 ) )  ∪  { 5 } ) ) | 
						
							| 29 |  | elun | ⊢ ( 𝑛  ∈  ( ( { 3 }  ∪  ( ( 3  +  1 ) ..^ 5 ) )  ∪  { 5 } )  ↔  ( 𝑛  ∈  ( { 3 }  ∪  ( ( 3  +  1 ) ..^ 5 ) )  ∨  𝑛  ∈  { 5 } ) ) | 
						
							| 30 |  | elun | ⊢ ( 𝑛  ∈  ( { 3 }  ∪  ( ( 3  +  1 ) ..^ 5 ) )  ↔  ( 𝑛  ∈  { 3 }  ∨  𝑛  ∈  ( ( 3  +  1 ) ..^ 5 ) ) ) | 
						
							| 31 |  | elsni | ⊢ ( 𝑛  ∈  { 3 }  →  𝑛  =  3 ) | 
						
							| 32 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 33 | 32 | snid | ⊢ 1  ∈  { 1 } | 
						
							| 34 | 33 | orci | ⊢ ( 1  ∈  { 1 }  ∨  1  ∈  ℙ ) | 
						
							| 35 |  | elun | ⊢ ( 1  ∈  ( { 1 }  ∪  ℙ )  ↔  ( 1  ∈  { 1 }  ∨  1  ∈  ℙ ) ) | 
						
							| 36 | 34 35 | mpbir | ⊢ 1  ∈  ( { 1 }  ∪  ℙ ) | 
						
							| 37 | 36 1 | eleqtrri | ⊢ 1  ∈  𝑃 | 
						
							| 38 | 37 | a1i | ⊢ ( 𝑛  =  3  →  1  ∈  𝑃 ) | 
						
							| 39 |  | simpl | ⊢ ( ( 𝑛  =  3  ∧  𝑝  =  1 )  →  𝑛  =  3 ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑝  =  1  →  ( 𝑝  +  𝑞 )  =  ( 1  +  𝑞 ) ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( 𝑝  =  1  →  ( ( 𝑝  +  𝑞 )  +  𝑟 )  =  ( ( 1  +  𝑞 )  +  𝑟 ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝑛  =  3  ∧  𝑝  =  1 )  →  ( ( 𝑝  +  𝑞 )  +  𝑟 )  =  ( ( 1  +  𝑞 )  +  𝑟 ) ) | 
						
							| 43 | 39 42 | eqeq12d | ⊢ ( ( 𝑛  =  3  ∧  𝑝  =  1 )  →  ( 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  3  =  ( ( 1  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 44 | 43 | 2rexbidv | ⊢ ( ( 𝑛  =  3  ∧  𝑝  =  1 )  →  ( ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 3  =  ( ( 1  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 45 |  | oveq2 | ⊢ ( 𝑞  =  1  →  ( 1  +  𝑞 )  =  ( 1  +  1 ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( 𝑞  =  1  →  ( ( 1  +  𝑞 )  +  𝑟 )  =  ( ( 1  +  1 )  +  𝑟 ) ) | 
						
							| 47 | 46 | eqeq2d | ⊢ ( 𝑞  =  1  →  ( 3  =  ( ( 1  +  𝑞 )  +  𝑟 )  ↔  3  =  ( ( 1  +  1 )  +  𝑟 ) ) ) | 
						
							| 48 | 47 | rexbidv | ⊢ ( 𝑞  =  1  →  ( ∃ 𝑟  ∈  𝑃 3  =  ( ( 1  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑟  ∈  𝑃 3  =  ( ( 1  +  1 )  +  𝑟 ) ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝑛  =  3  ∧  𝑞  =  1 )  →  ( ∃ 𝑟  ∈  𝑃 3  =  ( ( 1  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑟  ∈  𝑃 3  =  ( ( 1  +  1 )  +  𝑟 ) ) ) | 
						
							| 50 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 51 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 52 | 51 | oveq1i | ⊢ ( 2  +  1 )  =  ( ( 1  +  1 )  +  1 ) | 
						
							| 53 | 50 52 | eqtri | ⊢ 3  =  ( ( 1  +  1 )  +  1 ) | 
						
							| 54 |  | oveq2 | ⊢ ( 𝑟  =  1  →  ( ( 1  +  1 )  +  𝑟 )  =  ( ( 1  +  1 )  +  1 ) ) | 
						
							| 55 | 53 54 | eqtr4id | ⊢ ( 𝑟  =  1  →  3  =  ( ( 1  +  1 )  +  𝑟 ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( 𝑛  =  3  ∧  𝑟  =  1 )  →  3  =  ( ( 1  +  1 )  +  𝑟 ) ) | 
						
							| 57 | 38 56 | rspcedeq2vd | ⊢ ( 𝑛  =  3  →  ∃ 𝑟  ∈  𝑃 3  =  ( ( 1  +  1 )  +  𝑟 ) ) | 
						
							| 58 | 38 49 57 | rspcedvd | ⊢ ( 𝑛  =  3  →  ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 3  =  ( ( 1  +  𝑞 )  +  𝑟 ) ) | 
						
							| 59 | 38 44 58 | rspcedvd | ⊢ ( 𝑛  =  3  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 60 | 31 59 | syl | ⊢ ( 𝑛  ∈  { 3 }  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 61 |  | 3p1e4 | ⊢ ( 3  +  1 )  =  4 | 
						
							| 62 |  | df-5 | ⊢ 5  =  ( 4  +  1 ) | 
						
							| 63 | 61 62 | oveq12i | ⊢ ( ( 3  +  1 ) ..^ 5 )  =  ( 4 ..^ ( 4  +  1 ) ) | 
						
							| 64 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 65 |  | fzval3 | ⊢ ( 4  ∈  ℤ  →  ( 4 ... 4 )  =  ( 4 ..^ ( 4  +  1 ) ) ) | 
						
							| 66 | 64 65 | ax-mp | ⊢ ( 4 ... 4 )  =  ( 4 ..^ ( 4  +  1 ) ) | 
						
							| 67 | 63 66 | eqtr4i | ⊢ ( ( 3  +  1 ) ..^ 5 )  =  ( 4 ... 4 ) | 
						
							| 68 | 67 | eleq2i | ⊢ ( 𝑛  ∈  ( ( 3  +  1 ) ..^ 5 )  ↔  𝑛  ∈  ( 4 ... 4 ) ) | 
						
							| 69 |  | fzsn | ⊢ ( 4  ∈  ℤ  →  ( 4 ... 4 )  =  { 4 } ) | 
						
							| 70 | 64 69 | ax-mp | ⊢ ( 4 ... 4 )  =  { 4 } | 
						
							| 71 | 70 | eleq2i | ⊢ ( 𝑛  ∈  ( 4 ... 4 )  ↔  𝑛  ∈  { 4 } ) | 
						
							| 72 | 68 71 | bitri | ⊢ ( 𝑛  ∈  ( ( 3  +  1 ) ..^ 5 )  ↔  𝑛  ∈  { 4 } ) | 
						
							| 73 |  | elsni | ⊢ ( 𝑛  ∈  { 4 }  →  𝑛  =  4 ) | 
						
							| 74 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 75 | 74 | olci | ⊢ ( 2  ∈  { 1 }  ∨  2  ∈  ℙ ) | 
						
							| 76 |  | elun | ⊢ ( 2  ∈  ( { 1 }  ∪  ℙ )  ↔  ( 2  ∈  { 1 }  ∨  2  ∈  ℙ ) ) | 
						
							| 77 | 75 76 | mpbir | ⊢ 2  ∈  ( { 1 }  ∪  ℙ ) | 
						
							| 78 | 77 1 | eleqtrri | ⊢ 2  ∈  𝑃 | 
						
							| 79 | 78 | a1i | ⊢ ( 𝑛  =  4  →  2  ∈  𝑃 ) | 
						
							| 80 |  | oveq1 | ⊢ ( 𝑝  =  2  →  ( 𝑝  +  𝑞 )  =  ( 2  +  𝑞 ) ) | 
						
							| 81 | 80 | oveq1d | ⊢ ( 𝑝  =  2  →  ( ( 𝑝  +  𝑞 )  +  𝑟 )  =  ( ( 2  +  𝑞 )  +  𝑟 ) ) | 
						
							| 82 | 81 | eqeq2d | ⊢ ( 𝑝  =  2  →  ( 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  𝑛  =  ( ( 2  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 83 | 82 | 2rexbidv | ⊢ ( 𝑝  =  2  →  ( ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 2  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( 𝑛  =  4  ∧  𝑝  =  2 )  →  ( ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 2  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 85 | 37 | a1i | ⊢ ( 𝑛  =  4  →  1  ∈  𝑃 ) | 
						
							| 86 |  | oveq2 | ⊢ ( 𝑞  =  1  →  ( 2  +  𝑞 )  =  ( 2  +  1 ) ) | 
						
							| 87 | 86 | oveq1d | ⊢ ( 𝑞  =  1  →  ( ( 2  +  𝑞 )  +  𝑟 )  =  ( ( 2  +  1 )  +  𝑟 ) ) | 
						
							| 88 | 87 | eqeq2d | ⊢ ( 𝑞  =  1  →  ( 𝑛  =  ( ( 2  +  𝑞 )  +  𝑟 )  ↔  𝑛  =  ( ( 2  +  1 )  +  𝑟 ) ) ) | 
						
							| 89 | 88 | rexbidv | ⊢ ( 𝑞  =  1  →  ( ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 2  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 2  +  1 )  +  𝑟 ) ) ) | 
						
							| 90 | 89 | adantl | ⊢ ( ( 𝑛  =  4  ∧  𝑞  =  1 )  →  ( ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 2  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 2  +  1 )  +  𝑟 ) ) ) | 
						
							| 91 |  | simpl | ⊢ ( ( 𝑛  =  4  ∧  𝑟  =  1 )  →  𝑛  =  4 ) | 
						
							| 92 |  | df-4 | ⊢ 4  =  ( 3  +  1 ) | 
						
							| 93 | 50 | oveq1i | ⊢ ( 3  +  1 )  =  ( ( 2  +  1 )  +  1 ) | 
						
							| 94 | 92 93 | eqtri | ⊢ 4  =  ( ( 2  +  1 )  +  1 ) | 
						
							| 95 | 94 | a1i | ⊢ ( ( 𝑛  =  4  ∧  𝑟  =  1 )  →  4  =  ( ( 2  +  1 )  +  1 ) ) | 
						
							| 96 |  | oveq2 | ⊢ ( 𝑟  =  1  →  ( ( 2  +  1 )  +  𝑟 )  =  ( ( 2  +  1 )  +  1 ) ) | 
						
							| 97 | 96 | eqcomd | ⊢ ( 𝑟  =  1  →  ( ( 2  +  1 )  +  1 )  =  ( ( 2  +  1 )  +  𝑟 ) ) | 
						
							| 98 | 97 | adantl | ⊢ ( ( 𝑛  =  4  ∧  𝑟  =  1 )  →  ( ( 2  +  1 )  +  1 )  =  ( ( 2  +  1 )  +  𝑟 ) ) | 
						
							| 99 | 95 98 | eqtrd | ⊢ ( ( 𝑛  =  4  ∧  𝑟  =  1 )  →  4  =  ( ( 2  +  1 )  +  𝑟 ) ) | 
						
							| 100 | 91 99 | eqtrd | ⊢ ( ( 𝑛  =  4  ∧  𝑟  =  1 )  →  𝑛  =  ( ( 2  +  1 )  +  𝑟 ) ) | 
						
							| 101 | 85 100 | rspcedeq2vd | ⊢ ( 𝑛  =  4  →  ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 2  +  1 )  +  𝑟 ) ) | 
						
							| 102 | 85 90 101 | rspcedvd | ⊢ ( 𝑛  =  4  →  ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 2  +  𝑞 )  +  𝑟 ) ) | 
						
							| 103 | 79 84 102 | rspcedvd | ⊢ ( 𝑛  =  4  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 104 | 73 103 | syl | ⊢ ( 𝑛  ∈  { 4 }  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 105 | 72 104 | sylbi | ⊢ ( 𝑛  ∈  ( ( 3  +  1 ) ..^ 5 )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 106 | 60 105 | jaoi | ⊢ ( ( 𝑛  ∈  { 3 }  ∨  𝑛  ∈  ( ( 3  +  1 ) ..^ 5 ) )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 107 | 30 106 | sylbi | ⊢ ( 𝑛  ∈  ( { 3 }  ∪  ( ( 3  +  1 ) ..^ 5 ) )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 108 |  | elsni | ⊢ ( 𝑛  ∈  { 5 }  →  𝑛  =  5 ) | 
						
							| 109 |  | 3prm | ⊢ 3  ∈  ℙ | 
						
							| 110 | 109 | olci | ⊢ ( 3  ∈  { 1 }  ∨  3  ∈  ℙ ) | 
						
							| 111 |  | elun | ⊢ ( 3  ∈  ( { 1 }  ∪  ℙ )  ↔  ( 3  ∈  { 1 }  ∨  3  ∈  ℙ ) ) | 
						
							| 112 | 110 111 | mpbir | ⊢ 3  ∈  ( { 1 }  ∪  ℙ ) | 
						
							| 113 | 112 1 | eleqtrri | ⊢ 3  ∈  𝑃 | 
						
							| 114 | 113 | a1i | ⊢ ( 𝑛  =  5  →  3  ∈  𝑃 ) | 
						
							| 115 |  | oveq1 | ⊢ ( 𝑝  =  3  →  ( 𝑝  +  𝑞 )  =  ( 3  +  𝑞 ) ) | 
						
							| 116 | 115 | oveq1d | ⊢ ( 𝑝  =  3  →  ( ( 𝑝  +  𝑞 )  +  𝑟 )  =  ( ( 3  +  𝑞 )  +  𝑟 ) ) | 
						
							| 117 | 116 | eqeq2d | ⊢ ( 𝑝  =  3  →  ( 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  𝑛  =  ( ( 3  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 118 | 117 | 2rexbidv | ⊢ ( 𝑝  =  3  →  ( ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 3  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 119 | 118 | adantl | ⊢ ( ( 𝑛  =  5  ∧  𝑝  =  3 )  →  ( ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 3  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 120 | 37 | a1i | ⊢ ( 𝑛  =  5  →  1  ∈  𝑃 ) | 
						
							| 121 |  | oveq2 | ⊢ ( 𝑞  =  1  →  ( 3  +  𝑞 )  =  ( 3  +  1 ) ) | 
						
							| 122 | 121 | oveq1d | ⊢ ( 𝑞  =  1  →  ( ( 3  +  𝑞 )  +  𝑟 )  =  ( ( 3  +  1 )  +  𝑟 ) ) | 
						
							| 123 | 122 | eqeq2d | ⊢ ( 𝑞  =  1  →  ( 𝑛  =  ( ( 3  +  𝑞 )  +  𝑟 )  ↔  𝑛  =  ( ( 3  +  1 )  +  𝑟 ) ) ) | 
						
							| 124 | 123 | rexbidv | ⊢ ( 𝑞  =  1  →  ( ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 3  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 3  +  1 )  +  𝑟 ) ) ) | 
						
							| 125 | 124 | adantl | ⊢ ( ( 𝑛  =  5  ∧  𝑞  =  1 )  →  ( ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 3  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 3  +  1 )  +  𝑟 ) ) ) | 
						
							| 126 |  | simpl | ⊢ ( ( 𝑛  =  5  ∧  𝑟  =  1 )  →  𝑛  =  5 ) | 
						
							| 127 | 92 | oveq1i | ⊢ ( 4  +  1 )  =  ( ( 3  +  1 )  +  1 ) | 
						
							| 128 | 62 127 | eqtri | ⊢ 5  =  ( ( 3  +  1 )  +  1 ) | 
						
							| 129 |  | oveq2 | ⊢ ( 𝑟  =  1  →  ( ( 3  +  1 )  +  𝑟 )  =  ( ( 3  +  1 )  +  1 ) ) | 
						
							| 130 | 128 129 | eqtr4id | ⊢ ( 𝑟  =  1  →  5  =  ( ( 3  +  1 )  +  𝑟 ) ) | 
						
							| 131 | 130 | adantl | ⊢ ( ( 𝑛  =  5  ∧  𝑟  =  1 )  →  5  =  ( ( 3  +  1 )  +  𝑟 ) ) | 
						
							| 132 | 126 131 | eqtrd | ⊢ ( ( 𝑛  =  5  ∧  𝑟  =  1 )  →  𝑛  =  ( ( 3  +  1 )  +  𝑟 ) ) | 
						
							| 133 | 120 132 | rspcedeq2vd | ⊢ ( 𝑛  =  5  →  ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 3  +  1 )  +  𝑟 ) ) | 
						
							| 134 | 120 125 133 | rspcedvd | ⊢ ( 𝑛  =  5  →  ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 3  +  𝑞 )  +  𝑟 ) ) | 
						
							| 135 | 114 119 134 | rspcedvd | ⊢ ( 𝑛  =  5  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 136 | 108 135 | syl | ⊢ ( 𝑛  ∈  { 5 }  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 137 | 107 136 | jaoi | ⊢ ( ( 𝑛  ∈  ( { 3 }  ∪  ( ( 3  +  1 ) ..^ 5 ) )  ∨  𝑛  ∈  { 5 } )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 138 | 29 137 | sylbi | ⊢ ( 𝑛  ∈  ( ( { 3 }  ∪  ( ( 3  +  1 ) ..^ 5 ) )  ∪  { 5 } )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 139 | 138 | a1d | ⊢ ( 𝑛  ∈  ( ( { 3 }  ∪  ( ( 3  +  1 ) ..^ 5 ) )  ∪  { 5 } )  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 140 | 28 139 | sylbi | ⊢ ( 𝑛  ∈  ( 3 ... ( 6  −  1 ) )  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 141 |  | sbgoldbm | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 142 |  | rspa | ⊢ ( ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 6 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 143 |  | ssun2 | ⊢ ℙ  ⊆  ( { 1 }  ∪  ℙ ) | 
						
							| 144 | 143 1 | sseqtrri | ⊢ ℙ  ⊆  𝑃 | 
						
							| 145 |  | rexss | ⊢ ( ℙ  ⊆  𝑃  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑝  ∈  𝑃 ( 𝑝  ∈  ℙ  ∧  ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 146 | 144 145 | ax-mp | ⊢ ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑝  ∈  𝑃 ( 𝑝  ∈  ℙ  ∧  ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 147 |  | rexss | ⊢ ( ℙ  ⊆  𝑃  →  ( ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑞  ∈  𝑃 ( 𝑞  ∈  ℙ  ∧  ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 148 | 144 147 | ax-mp | ⊢ ( ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑞  ∈  𝑃 ( 𝑞  ∈  ℙ  ∧  ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 149 |  | rexss | ⊢ ( ℙ  ⊆  𝑃  →  ( ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑟  ∈  𝑃 ( 𝑟  ∈  ℙ  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 150 | 144 149 | ax-mp | ⊢ ( ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑟  ∈  𝑃 ( 𝑟  ∈  ℙ  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 151 |  | simpr | ⊢ ( ( 𝑟  ∈  ℙ  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 152 | 151 | reximi | ⊢ ( ∃ 𝑟  ∈  𝑃 ( 𝑟  ∈  ℙ  ∧  𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 153 | 150 152 | sylbi | ⊢ ( ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 154 | 153 | adantl | ⊢ ( ( 𝑞  ∈  ℙ  ∧  ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 155 | 154 | reximi | ⊢ ( ∃ 𝑞  ∈  𝑃 ( 𝑞  ∈  ℙ  ∧  ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 156 | 148 155 | sylbi | ⊢ ( ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 157 | 156 | adantl | ⊢ ( ( 𝑝  ∈  ℙ  ∧  ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 158 | 157 | reximi | ⊢ ( ∃ 𝑝  ∈  𝑃 ( 𝑝  ∈  ℙ  ∧  ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 159 | 146 158 | sylbi | ⊢ ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 160 | 142 159 | syl | ⊢ ( ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 6 ) )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 161 | 160 | ex | ⊢ ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 6 )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 162 | 141 161 | syl | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 6 )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 163 | 162 | com12 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 6 )  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 164 | 140 163 | jaoi | ⊢ ( ( 𝑛  ∈  ( 3 ... ( 6  −  1 ) )  ∨  𝑛  ∈  ( ℤ≥ ‘ 6 ) )  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 165 | 15 164 | sylbi | ⊢ ( 𝑛  ∈  ( ( 3 ... ( 6  −  1 ) )  ∪  ( ℤ≥ ‘ 6 ) )  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 166 | 165 | com12 | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑛  ∈  ( ( 3 ... ( 6  −  1 ) )  ∪  ( ℤ≥ ‘ 6 ) )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 167 | 14 166 | biimtrid | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 3 )  →  ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 168 | 2 167 | ralrimi | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 3 ) ∃ 𝑝  ∈  𝑃 ∃ 𝑞  ∈  𝑃 ∃ 𝑟  ∈  𝑃 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) |